Cargando…
A New Solution Concept for the Ultimatum Game leading to the Golden Ratio
The Ultimatum Game is a paradigmatic two-player game. A proposer can offer a certain fraction of some valuable good. A responder can accept the offer or reject it, implying that the two players receive nothing. The only subgame-perfect Nash equilibrium is to only offer an infinitesimal amount and to...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514050/ https://www.ncbi.nlm.nih.gov/pubmed/28717242 http://dx.doi.org/10.1038/s41598-017-05122-5 |
_version_ | 1783250767137734656 |
---|---|
author | Schuster, Stefan |
author_facet | Schuster, Stefan |
author_sort | Schuster, Stefan |
collection | PubMed |
description | The Ultimatum Game is a paradigmatic two-player game. A proposer can offer a certain fraction of some valuable good. A responder can accept the offer or reject it, implying that the two players receive nothing. The only subgame-perfect Nash equilibrium is to only offer an infinitesimal amount and to accept this. However, this equilibrium is not in agreement with experimental observations, which show varying accepted offers around 40%. While some authors suggest that the fairest split of 50% vs. 50% would be explainable on theoretical grounds or by computer simulation, a few authors (including myself) have recently suggested that the Golden Ratio, about 0.618 vs. about 0.382, would be the solution, in striking agreement with observations. Here we propose a solution concept, based on an optimality approach and epistemic arguments, leading to that suggested solution. The optimality principle is explained both in an axiomatic way and by bargaining arguments, and the relation to Fibonacci numbers is outlined. Our presentation complements the Economic Harmony theory proposed by R. Suleiman and is based on infinite continued fractions. The results are likely to be important for the theory of fair salaries, justice theory and the predictive value of game theory. |
format | Online Article Text |
id | pubmed-5514050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55140502017-07-19 A New Solution Concept for the Ultimatum Game leading to the Golden Ratio Schuster, Stefan Sci Rep Article The Ultimatum Game is a paradigmatic two-player game. A proposer can offer a certain fraction of some valuable good. A responder can accept the offer or reject it, implying that the two players receive nothing. The only subgame-perfect Nash equilibrium is to only offer an infinitesimal amount and to accept this. However, this equilibrium is not in agreement with experimental observations, which show varying accepted offers around 40%. While some authors suggest that the fairest split of 50% vs. 50% would be explainable on theoretical grounds or by computer simulation, a few authors (including myself) have recently suggested that the Golden Ratio, about 0.618 vs. about 0.382, would be the solution, in striking agreement with observations. Here we propose a solution concept, based on an optimality approach and epistemic arguments, leading to that suggested solution. The optimality principle is explained both in an axiomatic way and by bargaining arguments, and the relation to Fibonacci numbers is outlined. Our presentation complements the Economic Harmony theory proposed by R. Suleiman and is based on infinite continued fractions. The results are likely to be important for the theory of fair salaries, justice theory and the predictive value of game theory. Nature Publishing Group UK 2017-07-17 /pmc/articles/PMC5514050/ /pubmed/28717242 http://dx.doi.org/10.1038/s41598-017-05122-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Schuster, Stefan A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title | A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title_full | A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title_fullStr | A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title_full_unstemmed | A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title_short | A New Solution Concept for the Ultimatum Game leading to the Golden Ratio |
title_sort | new solution concept for the ultimatum game leading to the golden ratio |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514050/ https://www.ncbi.nlm.nih.gov/pubmed/28717242 http://dx.doi.org/10.1038/s41598-017-05122-5 |
work_keys_str_mv | AT schusterstefan anewsolutionconceptfortheultimatumgameleadingtothegoldenratio AT schusterstefan newsolutionconceptfortheultimatumgameleadingtothegoldenratio |