Cargando…

Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable only t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruzdev, Vitaly, Korkin, Dmitry, Mooney, Brian P., Havelund, Jesper F., Møller, Ian Max, Thelen, Jay J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514113/
https://www.ncbi.nlm.nih.gov/pubmed/28717198
http://dx.doi.org/10.1038/s41598-017-05761-8
Descripción
Sumario:Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable only to a small class of photosensitive biomolecules because of strong and ultrafast perturbations from biomolecule-solvent interactions. Here, we report excitation of harmonics of vibration modes of solvent molecules by femtosecond laser pulses to produce controlled chemical modifications of non-photosensitive peptides and proteins in polar liquids under room conditions. The principal modifications included lysine formylation and methionine sulfoxidation both of which occur with nearly 100% yield under atmospheric conditions. That modification occurred only if the laser irradiance exceeded certain threshold level. The threshold, type, and extent of the modifications were completely controlled by solvent composition, laser wavelength, and peak irradiance of ultrashort laser pulses. This approach is expected to assist in establishing rigorous control over a broad class of biological processes in cells and tissues at the molecular level.