Cargando…

Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR

Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy....

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Masaru, Kawaguchi, Tomoya, Isa, Shun-ichi, Ando, Masahiko, Tamiya, Akihiro, Kubo, Akihito, Saka, Hideo, Takeo, Sadanori, Adachi, Hirofumi, Tagawa, Tsutomu, Kawashima, Osamu, Yamashita, Motohiro, Kataoka, Kazuhiko, Ichinose, Yukito, Takeuchi, Yukiyasu, Watanabe, Katsuya, Matsumura, Akihide, Koh, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514407/
https://www.ncbi.nlm.nih.gov/pubmed/28625519
http://dx.doi.org/10.1016/j.ebiom.2017.06.003
_version_ 1783250835967311872
author Watanabe, Masaru
Kawaguchi, Tomoya
Isa, Shun-ichi
Ando, Masahiko
Tamiya, Akihiro
Kubo, Akihito
Saka, Hideo
Takeo, Sadanori
Adachi, Hirofumi
Tagawa, Tsutomu
Kawashima, Osamu
Yamashita, Motohiro
Kataoka, Kazuhiko
Ichinose, Yukito
Takeuchi, Yukiyasu
Watanabe, Katsuya
Matsumura, Akihide
Koh, Yasuhiro
author_facet Watanabe, Masaru
Kawaguchi, Tomoya
Isa, Shun-ichi
Ando, Masahiko
Tamiya, Akihiro
Kubo, Akihito
Saka, Hideo
Takeo, Sadanori
Adachi, Hirofumi
Tagawa, Tsutomu
Kawashima, Osamu
Yamashita, Motohiro
Kataoka, Kazuhiko
Ichinose, Yukito
Takeuchi, Yukiyasu
Watanabe, Katsuya
Matsumura, Akihide
Koh, Yasuhiro
author_sort Watanabe, Masaru
collection PubMed
description Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~ 0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, < 0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R(2)) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M).
format Online
Article
Text
id pubmed-5514407
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-55144072017-07-27 Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR Watanabe, Masaru Kawaguchi, Tomoya Isa, Shun-ichi Ando, Masahiko Tamiya, Akihiro Kubo, Akihito Saka, Hideo Takeo, Sadanori Adachi, Hirofumi Tagawa, Tsutomu Kawashima, Osamu Yamashita, Motohiro Kataoka, Kazuhiko Ichinose, Yukito Takeuchi, Yukiyasu Watanabe, Katsuya Matsumura, Akihide Koh, Yasuhiro EBioMedicine Research Paper Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~ 0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, < 0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R(2)) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Elsevier 2017-06-07 /pmc/articles/PMC5514407/ /pubmed/28625519 http://dx.doi.org/10.1016/j.ebiom.2017.06.003 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Paper
Watanabe, Masaru
Kawaguchi, Tomoya
Isa, Shun-ichi
Ando, Masahiko
Tamiya, Akihiro
Kubo, Akihito
Saka, Hideo
Takeo, Sadanori
Adachi, Hirofumi
Tagawa, Tsutomu
Kawashima, Osamu
Yamashita, Motohiro
Kataoka, Kazuhiko
Ichinose, Yukito
Takeuchi, Yukiyasu
Watanabe, Katsuya
Matsumura, Akihide
Koh, Yasuhiro
Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title_full Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title_fullStr Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title_full_unstemmed Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title_short Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR
title_sort multiplex ultrasensitive genotyping of patients with non-small cell lung cancer for epidermal growth factor receptor (egfr) mutations by means of picodroplet digital pcr
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514407/
https://www.ncbi.nlm.nih.gov/pubmed/28625519
http://dx.doi.org/10.1016/j.ebiom.2017.06.003
work_keys_str_mv AT watanabemasaru multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT kawaguchitomoya multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT isashunichi multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT andomasahiko multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT tamiyaakihiro multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT kuboakihito multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT sakahideo multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT takeosadanori multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT adachihirofumi multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT tagawatsutomu multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT kawashimaosamu multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT yamashitamotohiro multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT kataokakazuhiko multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT ichinoseyukito multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT takeuchiyukiyasu multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT watanabekatsuya multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT matsumuraakihide multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr
AT kohyasuhiro multiplexultrasensitivegenotypingofpatientswithnonsmallcelllungcancerforepidermalgrowthfactorreceptoregfrmutationsbymeansofpicodropletdigitalpcr