Cargando…
Up-regulation of CDK16 by multiple mechanisms in hepatocellular carcinoma promotes tumor progression
BACKGROUND: Hepatocellular carcinoma (HCC) remains difficult to cure due to lack of effective treatment and the molecular mechanisms are complex and not completely understood. In this study, We investigated the role of CDK16 in tumor progression of HCC. METHODS: We interrogated the expression level...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514535/ https://www.ncbi.nlm.nih.gov/pubmed/28716136 http://dx.doi.org/10.1186/s13046-017-0569-2 |
Sumario: | BACKGROUND: Hepatocellular carcinoma (HCC) remains difficult to cure due to lack of effective treatment and the molecular mechanisms are complex and not completely understood. In this study, We investigated the role of CDK16 in tumor progression of HCC. METHODS: We interrogated the expression level of CDK16 by polymerase chain reaction and immunohistochemistry(IHC) and studied its clinical significance. The functional role of CDK16 on HCC was studied via gain and loss of function in vitro and in vivo. Luciferase reporter assay and Chromatin immunoprecipitation(ChIP) assay were performed to investigate the transcriptional and post-transcriptional mechanisms involved in the regulation of CDK16. RESULTS: CDK16 expression was significantly up-regulated in HCC and higher expression of CDK16 was positively correlated with aggressive clinicopathological phenotype and poorer survival rates. Functionally, knockdown of CDK16 suppressed proliferation in vitro and in vivo. Inactivation of CDK16 also induced apoptosis and cell cycle arrest. Most importantly, CDK16 promoted epithelial mesenchymal transition and tumor invasion by activating β-catenin signaling. In addition, We identified E2F1 as a positive transcriptional regulator of CDK16. Moreover, down regulation of miR-125b-5p enhanced CDK16 expression at post-transcriptional level. CONCLUSION: We provided the first evidence that CDK16 is an bona fide oncogene in HCC, and multiple activating mechanisms at transcriptional and posttranscriptional levels together contributes to CDK16 up-regulation in HCC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13046-017-0569-2) contains supplementary material, which is available to authorized users. |
---|