Cargando…
Critical signaling pathways during Wallerian degeneration of peripheral nerve
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate sign...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514877/ https://www.ncbi.nlm.nih.gov/pubmed/28761435 http://dx.doi.org/10.4103/1673-5374.208596 |
_version_ | 1783250900350926848 |
---|---|
author | Cheng, Qiong Wang, Ya-xian Yu, Jun Yi, Sheng |
author_facet | Cheng, Qiong Wang, Ya-xian Yu, Jun Yi, Sheng |
author_sort | Cheng, Qiong |
collection | PubMed |
description | Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration |
format | Online Article Text |
id | pubmed-5514877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-55148772017-07-31 Critical signaling pathways during Wallerian degeneration of peripheral nerve Cheng, Qiong Wang, Ya-xian Yu, Jun Yi, Sheng Neural Regen Res Research Article Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration Medknow Publications & Media Pvt Ltd 2017-06 /pmc/articles/PMC5514877/ /pubmed/28761435 http://dx.doi.org/10.4103/1673-5374.208596 Text en Copyright: © Neural Regeneration Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Cheng, Qiong Wang, Ya-xian Yu, Jun Yi, Sheng Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title | Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_full | Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_fullStr | Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_full_unstemmed | Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_short | Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_sort | critical signaling pathways during wallerian degeneration of peripheral nerve |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514877/ https://www.ncbi.nlm.nih.gov/pubmed/28761435 http://dx.doi.org/10.4103/1673-5374.208596 |
work_keys_str_mv | AT chengqiong criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT wangyaxian criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT yujun criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT yisheng criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve |