Cargando…

Optisample(TM): Open web-based application to optimize sampling strategies for active surveillance activities at the herd level illustrated using Porcine Respiratory Reproductive Syndrome (PRRS)

Porcine reproductive and respiratory syndrome virus (PRRSv) infection causes a devastating economic impact to the swine industry. Active surveillance is routinely conducted in many swine herds to demonstrate freedom from PRRSv infection. The design of efficient active surveillance sampling schemes i...

Descripción completa

Detalles Bibliográficos
Autores principales: Alba, Anna, Morrison, Robert E., Cheeran, Ann, Rovira, Albert, Alvarez, Julio, Perez, Andres M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515404/
https://www.ncbi.nlm.nih.gov/pubmed/28719658
http://dx.doi.org/10.1371/journal.pone.0176863
Descripción
Sumario:Porcine reproductive and respiratory syndrome virus (PRRSv) infection causes a devastating economic impact to the swine industry. Active surveillance is routinely conducted in many swine herds to demonstrate freedom from PRRSv infection. The design of efficient active surveillance sampling schemes is challenging because optimum surveillance strategies may differ depending on infection status, herd structure, management, or resources for conducting sampling. Here, we present an open web-based application, named ‘Optisample(TM)’, designed to optimize herd sampling strategies to substantiate freedom of infection considering also costs of testing. In addition to herd size, expected prevalence, test sensitivity, and desired level of confidence, the model takes into account the presumed risk of pathogen introduction between samples, the structure of the herd, and the process to select the samples over time. We illustrate the functionality and capacity of ‘Optisample(TM)’ through its application to active surveillance of PRRSv in hypothetical swine herds under disparate epidemiological situations. Diverse sampling schemes were simulated and compared for each herd to identify effective strategies at low costs. The model results show that to demonstrate freedom from disease, it is important to consider both the epidemiological situation of the herd and the sample selected. The approach illustrated here for PRRSv may be easily extended to other animal disease surveillance systems using the web-based application available at http://stemma.ahc.umn.edu/optisample.