Cargando…

Observational study: microgravity testing of a phase-change reference on the International Space Station

BACKGROUND: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Topham, T Shane, Bingham, Gail E, Latvakoski, Harri, Podolski, Igor, Sychev, Vladimir S, Burdakin, Andre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515497/
https://www.ncbi.nlm.nih.gov/pubmed/28725713
http://dx.doi.org/10.1038/npjmgrav.2015.9
_version_ 1783251000397660160
author Topham, T Shane
Bingham, Gail E
Latvakoski, Harri
Podolski, Igor
Sychev, Vladimir S
Burdakin, Andre
author_facet Topham, T Shane
Bingham, Gail E
Latvakoski, Harri
Podolski, Igor
Sychev, Vladimir S
Burdakin, Andre
author_sort Topham, T Shane
collection PubMed
description BACKGROUND: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. AIMS: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. METHODS: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. RESULTS: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. CONCLUSIONS: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.
format Online
Article
Text
id pubmed-5515497
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-55154972017-07-19 Observational study: microgravity testing of a phase-change reference on the International Space Station Topham, T Shane Bingham, Gail E Latvakoski, Harri Podolski, Igor Sychev, Vladimir S Burdakin, Andre NPJ Microgravity Article BACKGROUND: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. AIMS: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. METHODS: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. RESULTS: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. CONCLUSIONS: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. Nature Publishing Group 2015-08-20 /pmc/articles/PMC5515497/ /pubmed/28725713 http://dx.doi.org/10.1038/npjmgrav.2015.9 Text en Copyright © 2015 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Article
Topham, T Shane
Bingham, Gail E
Latvakoski, Harri
Podolski, Igor
Sychev, Vladimir S
Burdakin, Andre
Observational study: microgravity testing of a phase-change reference on the International Space Station
title Observational study: microgravity testing of a phase-change reference on the International Space Station
title_full Observational study: microgravity testing of a phase-change reference on the International Space Station
title_fullStr Observational study: microgravity testing of a phase-change reference on the International Space Station
title_full_unstemmed Observational study: microgravity testing of a phase-change reference on the International Space Station
title_short Observational study: microgravity testing of a phase-change reference on the International Space Station
title_sort observational study: microgravity testing of a phase-change reference on the international space station
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515497/
https://www.ncbi.nlm.nih.gov/pubmed/28725713
http://dx.doi.org/10.1038/npjmgrav.2015.9
work_keys_str_mv AT tophamtshane observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation
AT binghamgaile observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation
AT latvakoskiharri observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation
AT podolskiigor observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation
AT sychevvladimirs observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation
AT burdakinandre observationalstudymicrogravitytestingofaphasechangereferenceontheinternationalspacestation