Cargando…
Multi-Parameter Ensemble Learning for Automated Vertebral Body Segmentation in Heterogeneously Acquired Clinical MR Images
The development of quantitative imaging biomarkers in medicine requires automatic delineation of relevant anatomical structures using available imaging data. However, this task is complicated in clinical medicine due to the variation in scanning parameters and protocols, even within a single medical...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515511/ https://www.ncbi.nlm.nih.gov/pubmed/29018631 http://dx.doi.org/10.1109/JTEHM.2017.2717982 |
Ejemplares similares
-
AI-Based Automated Lipomatous Tumor Segmentation in MR Images: Ensemble Solution to Heterogeneous Data
por: Liu, Chih-Chieh, et al.
Publicado: (2023) -
Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets
por: Zhang, Yue, et al.
Publicado: (2021) -
Semi-Automatic Segmentation of Vertebral Bodies in MR Images of Human Lumbar Spines
por: Kim, Sewon, et al.
Publicado: (2018) -
Automated segmentation of endometrial cancer on MR images using deep learning
por: Hodneland, Erlend, et al.
Publicado: (2021) -
Automated cervical cell segmentation using deep ensemble learning
por: Ji, Jie, et al.
Publicado: (2023)