Cargando…
EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the b...
Autores principales: | Simpraga, Sonja, Alvarez-Jimenez, Ricardo, Mansvelder, Huibert D., van Gerven, Joop M. A., Groeneveld, Geert Jan, Poil, Simon-Shlomo, Linkenkaer-Hansen, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515842/ https://www.ncbi.nlm.nih.gov/pubmed/28720796 http://dx.doi.org/10.1038/s41598-017-06165-4 |
Ejemplares similares
-
Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage
por: Poil, Simon-Shlomo, et al.
Publicado: (2013) -
Strong long‐range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance
por: Irrmischer, Mona, et al.
Publicado: (2017) -
Long-Range Temporal Correlations in Alpha Oscillations Stabilize Perception of Ambiguous Visual Stimuli
por: Sangiuliano Intra, Francesca, et al.
Publicado: (2018) -
Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations
por: Hardstone, Richard, et al.
Publicado: (2012) -
Adults with autism spectrum disorder show atypical patterns of thoughts and feelings during rest
por: Simpraga, Sonja, et al.
Publicado: (2021)