Cargando…
Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat
Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic l...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515872/ https://www.ncbi.nlm.nih.gov/pubmed/28769973 http://dx.doi.org/10.3389/fpls.2017.01284 |
_version_ | 1783251046787710976 |
---|---|
author | Si, Tong Wang, Xiao Wu, Lin Zhao, Chunzhao Zhang, Lini Huang, Mei Cai, Jian Zhou, Qin Dai, Tingbo Zhu, Jian-Kang Jiang, Dong |
author_facet | Si, Tong Wang, Xiao Wu, Lin Zhao, Chunzhao Zhang, Lini Huang, Mei Cai, Jian Zhou, Qin Dai, Tingbo Zhu, Jian-Kang Jiang, Dong |
author_sort | Si, Tong |
collection | PubMed |
description | Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H(2)O(2) accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H(2)O(2) acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H(2)O(2) acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of “photosynthesis” and “signaling.” These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H(2)O(2), and further modifications in photosystem and antioxidant system. |
format | Online Article Text |
id | pubmed-5515872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55158722017-08-02 Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat Si, Tong Wang, Xiao Wu, Lin Zhao, Chunzhao Zhang, Lini Huang, Mei Cai, Jian Zhou, Qin Dai, Tingbo Zhu, Jian-Kang Jiang, Dong Front Plant Sci Plant Science Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H(2)O(2) accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H(2)O(2) acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H(2)O(2) acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of “photosynthesis” and “signaling.” These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H(2)O(2), and further modifications in photosystem and antioxidant system. Frontiers Media S.A. 2017-07-19 /pmc/articles/PMC5515872/ /pubmed/28769973 http://dx.doi.org/10.3389/fpls.2017.01284 Text en Copyright © 2017 Si, Wang, Wu, Zhao, Zhang, Huang, Cai, Zhou, Dai, Zhu and Jiang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Si, Tong Wang, Xiao Wu, Lin Zhao, Chunzhao Zhang, Lini Huang, Mei Cai, Jian Zhou, Qin Dai, Tingbo Zhu, Jian-Kang Jiang, Dong Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title | Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title_full | Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title_fullStr | Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title_full_unstemmed | Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title_short | Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat |
title_sort | nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515872/ https://www.ncbi.nlm.nih.gov/pubmed/28769973 http://dx.doi.org/10.3389/fpls.2017.01284 |
work_keys_str_mv | AT sitong nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT wangxiao nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT wulin nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT zhaochunzhao nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT zhanglini nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT huangmei nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT caijian nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT zhouqin nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT daitingbo nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT zhujiankang nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat AT jiangdong nitricoxideandhydrogenperoxidemediatewoundinginducedfreezingtolerancethroughmodificationsinphotosystemandantioxidantsysteminwheat |