Cargando…
Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis
Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG) signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecologi...
Autores principales: | Lin, Yuan-Pin, Jao, Ping-Keng, Yang, Yi-Hsuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515900/ https://www.ncbi.nlm.nih.gov/pubmed/28769778 http://dx.doi.org/10.3389/fncom.2017.00064 |
Ejemplares similares
-
Improving EEG-Based Emotion Classification Using Conditional Transfer Learning
por: Lin, Yuan-Pin, et al.
Publicado: (2017) -
Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time
por: Liu, Shuang, et al.
Publicado: (2018) -
Classification of Movement Intention Using Independent Components of Premovement EEG
por: Kim, Hyeonseok, et al.
Publicado: (2019) -
Principal component analysis of photoplethysmography signals for improved gesture recognition
por: Ruan, Yuwen, et al.
Publicado: (2022) -
Dynamic Principal Component Analysis with Nonoverlapping Moving Window and Its Applications to Epileptic EEG Classification
por: Xie, Shengkun, et al.
Publicado: (2014)