Cargando…

Two-part permutation tests for DNA methylation and microarray data

BACKGROUND: One important application of microarray experiments is to identify differentially expressed genes. Often, small and negative expression levels were clipped-off to be equal to an arbitrarily chosen cutoff value before a statistical test is carried out. Then, there are two types of data: t...

Descripción completa

Detalles Bibliográficos
Autores principales: Neuhäuser, Markus, Boes, Tanja, Jöckel, Karl-Heinz
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC551601/
https://www.ncbi.nlm.nih.gov/pubmed/15725357
http://dx.doi.org/10.1186/1471-2105-6-35
Descripción
Sumario:BACKGROUND: One important application of microarray experiments is to identify differentially expressed genes. Often, small and negative expression levels were clipped-off to be equal to an arbitrarily chosen cutoff value before a statistical test is carried out. Then, there are two types of data: truncated values and original observations. The truncated values are not just another point on the continuum of possible values and, therefore, it is appropriate to combine two statistical tests in a two-part model rather than using standard statistical methods. A similar situation occurs when DNA methylation data are investigated. In that case, there are null values (undetectable methylation) and observed positive values. For these data, we propose a two-part permutation test. RESULTS: The proposed permutation test leads to smaller p-values in comparison to the original two-part test. We found this for both DNA methylation data and microarray data. With a simulation study we confirmed this result and could show that the two-part permutation test is, on average, more powerful. The new test also reduces, without any loss of power, to a standard test when there are no null or truncated values. CONCLUSION: The two-part permutation test can be used in routine analyses since it reduces to a standard test when there are positive values only. Further advantages of the new test are that it opens the possibility to use other test statistics to construct the two-part test and that it avoids the use of any asymptotic distribution. The latter advantage is particularly important for the analysis of microarrays since sample sizes are usually small.