Cargando…
Digital imaging biomarkers feed machine learning for melanoma screening
We developed an automated approach for generating quantitative image analysis metrics (imaging biomarkers) that are then analysed with a set of 13 machine learning algorithms to generate an overall risk score that is called a Q‐score. These methods were applied to a set of 120 “difficult” dermoscopy...
Autores principales: | Gareau, Daniel S., Correa da Rosa, Joel, Yagerman, Sarah, Carucci, John A., Gulati, Nicholas, Hueto, Ferran, DeFazio, Jennifer L., Suárez‐Fariñas, Mayte, Marghoob, Ashfaq, Krueger, James G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516237/ https://www.ncbi.nlm.nih.gov/pubmed/27783441 http://dx.doi.org/10.1111/exd.13250 |
Ejemplares similares
-
Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues
por: Gareau, Daniel S., et al.
Publicado: (2020) -
Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions
por: Gulati, Nicholas, et al.
Publicado: (2015) -
Creation of differentiation-specific genomic maps of human epidermis through laser capture microdissection
por: Gulati, Nicholas, et al.
Publicado: (2013) -
Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma (SCC): IL-24 driven MMP-7
por: Mitsui, Hiroshi, et al.
Publicado: (2013) -
Association between melanocytic neoplasms and seborrheic keratosis: more than a coincidental collision?
por: DeFazio, Jennifer, et al.
Publicado: (2012)