Cargando…

Warming effects on the urban hydrology in cold climate regions

While approximately 338 million people in the Northern hemisphere live in regions that are regularly snow covered in winter, there is little hydro-climatologic knowledge in the cities impacted by snow. Using observations and modelling we have evaluated the energy and water exchanges of four cities t...

Descripción completa

Detalles Bibliográficos
Autores principales: Järvi, L., Grimmond, C. S. B., McFadden, J. P., Christen, A., Strachan, I. B., Taka, M., Warsta, L., Heimann, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517421/
https://www.ncbi.nlm.nih.gov/pubmed/28725047
http://dx.doi.org/10.1038/s41598-017-05733-y
Descripción
Sumario:While approximately 338 million people in the Northern hemisphere live in regions that are regularly snow covered in winter, there is little hydro-climatologic knowledge in the cities impacted by snow. Using observations and modelling we have evaluated the energy and water exchanges of four cities that are exposed to wintertime snow. We show that the presence of snow critically changes the impact that city design has on the local-scale hydrology and climate. After snow melt, the cities return to being strongly controlled by the proportion of built and vegetated surfaces. However in winter, the presence of snow masks the influence of the built and vegetated fractions. We show how inter-year variability of wintertime temperature can modify this effect of snow. With increasing temperatures, these cities could be pushed towards very different partitioning between runoff and evapotranspiration. We derive the dependency of wintertime runoff on this warming effect in combination with the effect of urban densification.