Cargando…

Quinolinate Phosphoribosyltransferase is an Antiviral Host Factor Against Hepatitis C Virus Infection

HCV infection can decrease NAD(+)/NADH ratio, which could convert lipid metabolism to favor HCV replication. In hepatocytes, quinolinate phosphoribosyl transferase (QPRT) catabolizes quinolinic acid (QA) to nicotinic acid mononucleotide (NAMN) for de novo NAD synthesis. However, whether and how HCV...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhilong, Gao, Yanhang, Zhang, Chao, Hu, Haiming, Guo, Dongwei, Xu, Yi, Xu, Qiuping, Zhang, Weihong, Deng, Sisi, Lv, Pingyun, Yang, Yan, Ding, Yanhua, Li, Qingquan, Weng, Changjiang, Chen, Xinwen, Gong, Sitang, Chen, Hairong, Niu, Junqi, Tang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517448/
https://www.ncbi.nlm.nih.gov/pubmed/28724915
http://dx.doi.org/10.1038/s41598-017-06254-4
Descripción
Sumario:HCV infection can decrease NAD(+)/NADH ratio, which could convert lipid metabolism to favor HCV replication. In hepatocytes, quinolinate phosphoribosyl transferase (QPRT) catabolizes quinolinic acid (QA) to nicotinic acid mononucleotide (NAMN) for de novo NAD synthesis. However, whether and how HCV modulates QPRT hence the lipogenesis is unknown. In this work, we found QPRT was reduced significantly in livers of patients or humanized C/O(Tg) mice with persistent HCV infection. Mechanistic studies indicated that HCV NS3/4A promoted proteasomal degradation of QPRT through Smurf2, an E3 ubiquitin-protein ligase, in Huh7.5.1 cells. Furthermore, QPRT enzymatic activity involved in suppression of HCV replication in cells. Activation of QPRT with clofibrate (CLO) or addition of QPRT catabolite NAD both inhibited HCV replication in cells, probably through NAD(+)-dependent Sirt1 inhibition of cellular lipogenesis. More importantly, administration of CLO, a hypolipidemic drug used in clinics, could significantly reduce the viral load in HCV infected C/O(Tg) mice. Take together, these results suggested that HCV infection triggered proteasomal degradation of QPRT and consequently reduced de novo NAD synthesis and lipogenesis, in favor of HCV replication. Hepatic QPRT thus likely served as a cellular factor that dampened productive HCV replication.