Cargando…
Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi(2)O(7))
Compounds with the formulae CaZr(1−x)Ce(x)Ti(2)O(7) with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with inc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517558/ https://www.ncbi.nlm.nih.gov/pubmed/28724965 http://dx.doi.org/10.1038/s41598-017-06407-5 |
Sumario: | Compounds with the formulae CaZr(1−x)Ce(x)Ti(2)O(7) with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca(0.4)Ce(0.4)TiO(3)) was stabilized due to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi(2)O(7) (cubic pyrochlore) formed as an intermediate phase during the transition. Our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P(O2) and the heat treatment temperature. |
---|