Cargando…
Enhanced differential expression statistics for data-independent acquisition proteomics
We describe a new reproducibility-optimization method ROPECA for statistical analysis of proteomics data with a specific focus on the emerging data-independent acquisition (DIA) mass spectrometry technology. ROPECA optimizes the reproducibility of statistical testing on peptide-level and aggregates...
Autores principales: | Suomi, Tomi, Elo, Laura L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517573/ https://www.ncbi.nlm.nih.gov/pubmed/28724900 http://dx.doi.org/10.1038/s41598-017-05949-y |
Ejemplares similares
-
Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples
por: Pietilä, Sami, et al.
Publicado: (2022) -
A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation
por: Välikangas, Tommi, et al.
Publicado: (2017) -
A systematic evaluation of normalization methods in quantitative label-free proteomics
por: Välikangas, Tommi, et al.
Publicado: (2016) -
Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
por: Välikangas, Tommi, et al.
Publicado: (2022) -
ROTS: An R package for reproducibility-optimized statistical testing
por: Suomi, Tomi, et al.
Publicado: (2017)