Cargando…

Issues Associated With the Use of Semantic Web Technology in Knowledge Acquisition for Clinical Decision Support Systems: Systematic Review of the Literature

BACKGROUND: Knowledge-based clinical decision support system (KB-CDSS) can be used to help practitioners make diagnostic decisions. KB-CDSS may use clinical knowledge obtained from a wide variety of sources to make decisions. However, knowledge acquisition is one of the well-known bottlenecks in KB-...

Descripción completa

Detalles Bibliográficos
Autores principales: Zolhavarieh, Seyedjamal, Parry, David, Bai, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517823/
https://www.ncbi.nlm.nih.gov/pubmed/28679487
http://dx.doi.org/10.2196/medinform.6169
Descripción
Sumario:BACKGROUND: Knowledge-based clinical decision support system (KB-CDSS) can be used to help practitioners make diagnostic decisions. KB-CDSS may use clinical knowledge obtained from a wide variety of sources to make decisions. However, knowledge acquisition is one of the well-known bottlenecks in KB-CDSSs, partly because of the enormous growth in health-related knowledge available and the difficulty in assessing the quality of this knowledge as well as identifying the “best” knowledge to use. This bottleneck not only means that lower-quality knowledge is being used, but also that KB-CDSSs are difficult to develop for areas where expert knowledge may be limited or unavailable. Recent methods have been developed by utilizing Semantic Web (SW) technologies in order to automatically discover relevant knowledge from knowledge sources. OBJECTIVE: The two main objectives of this study were to (1) identify and categorize knowledge acquisition issues that have been addressed through using SW technologies and (2) highlight the role of SW for acquiring knowledge used in the KB-CDSS. METHODS: We conducted a systematic review of the recent work related to knowledge acquisition MeM for clinical decision support systems published in scientific journals. In this regard, we used the keyword search technique to extract relevant papers. RESULTS: The retrieved papers were categorized based on two main issues: (1) format and data heterogeneity and (2) lack of semantic analysis. Most existing approaches will be discussed under these categories. A total of 27 papers were reviewed in this study. CONCLUSIONS: The potential for using SW technology in KB-CDSS has only been considered to a minor extent so far despite its promise. This review identifies some questions and issues regarding use of SW technology for extracting relevant knowledge for a KB-CDSS.