Cargando…

Cost-Effectiveness of isoniazid preventive therapy among HIV-infected patients clinicaly screened for latent tuberculosis infection in Dar es Salaam, Tanzania: A prospective Cohort study

BACKGROUND: One of the reasons why Isoniazid preventive therapy (IPT) for Tuberculosis (TB) is not widely used in low income countries is concerns on cost of excluding active TB. We analyzed the cost-effectiveness of IPT provision in Tanzania having ruled out active TB by a symptom-based screening t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shayo, Grace A., Chitama, Dereck, Moshiro, Candida, Aboud, Said, Bakari, Muhammad, Mugusi, Ferdinand
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518094/
https://www.ncbi.nlm.nih.gov/pubmed/28724374
http://dx.doi.org/10.1186/s12889-017-4597-9
Descripción
Sumario:BACKGROUND: One of the reasons why Isoniazid preventive therapy (IPT) for Tuberculosis (TB) is not widely used in low income countries is concerns on cost of excluding active TB. We analyzed the cost-effectiveness of IPT provision in Tanzania having ruled out active TB by a symptom-based screening tool. METHODS: Data on IPT cost-effectiveness was prospectively collected from an observational cohort study of 1283 HIV-infected patients on IPT and 1281 controls; followed up for 24 months. The time horizon for the analysis was 2 years. Number of TB cases prevented and deaths averted were used for effectiveness. A micro costing approach was used from a provider perspective. Cost was estimated on the basis of clinical records, market price or interviews with medical staff. We annualized the cost at a discount of 3%. A univariate sensitivity analysis was done. Results are presented in US$ at an average annual exchange rate for the year 2012 which was Tanzania shillings 1562.4 for 1 US $. RESULTS: The number of TB cases prevented was 420/100,000 persons receiving IPT. The number of deaths averted was 979/100,000 persons receiving IPT. Incremental cost due to IPT provision was US$ 170,490. The incremental cost effective ratio was US $ 405.93 per TB case prevented and US $ 174.15 per death averted. These costs were less than 3 times the 768 US $ Gross Domestic Product (GDP) per capita for Tanzania in the year 2014, making IPT provision after ruling out active TB by the symptom-based screening tool cost-effective. The results were robust to changes in laboratory and radiological tests but not to changes in recurrent, personnel, medication and utility costs. CONCLUSION: IPT should be given to HIV-infected patients who screen negative to symptom-based TB screening questionnaire. Its cost-effectiveness supports government policy to integrate IPT to HIV/AIDS care and treatment in the country, given the availability of budget and the capacity of health facilities.