Cargando…
Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518283/ https://www.ncbi.nlm.nih.gov/pubmed/28370647 http://dx.doi.org/10.1111/mec.14123 |
_version_ | 1783251465775611904 |
---|---|
author | Balao, Francisco Trucchi, Emiliano Wolfe, Thomas M. Hao, Bao‐Hai Lorenzo, Maria Teresa Baar, Juliane Sedman, Laura Kosiol, Carolin Amman, Fabian Chase, Mark W. Hedrén, Mikael Paun, Ovidiu |
author_facet | Balao, Francisco Trucchi, Emiliano Wolfe, Thomas M. Hao, Bao‐Hai Lorenzo, Maria Teresa Baar, Juliane Sedman, Laura Kosiol, Carolin Amman, Fabian Chase, Mark W. Hedrén, Mikael Paun, Ovidiu |
author_sort | Balao, Francisco |
collection | PubMed |
description | The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage‐specific adaptive evolution of protein‐coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post‐transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA‐dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation. |
format | Online Article Text |
id | pubmed-5518283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55182832017-08-03 Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima Balao, Francisco Trucchi, Emiliano Wolfe, Thomas M. Hao, Bao‐Hai Lorenzo, Maria Teresa Baar, Juliane Sedman, Laura Kosiol, Carolin Amman, Fabian Chase, Mark W. Hedrén, Mikael Paun, Ovidiu Mol Ecol ORIGINAL ARTICLES The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage‐specific adaptive evolution of protein‐coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post‐transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA‐dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation. John Wiley and Sons Inc. 2017-04-27 2017-07 /pmc/articles/PMC5518283/ /pubmed/28370647 http://dx.doi.org/10.1111/mec.14123 Text en © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ORIGINAL ARTICLES Balao, Francisco Trucchi, Emiliano Wolfe, Thomas M. Hao, Bao‐Hai Lorenzo, Maria Teresa Baar, Juliane Sedman, Laura Kosiol, Carolin Amman, Fabian Chase, Mark W. Hedrén, Mikael Paun, Ovidiu Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title | Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title_full | Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title_fullStr | Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title_full_unstemmed | Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title_short | Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima |
title_sort | adaptive sequence evolution is driven by biotic stress in a pair of orchid species (dactylorhiza) with distinct ecological optima |
topic | ORIGINAL ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518283/ https://www.ncbi.nlm.nih.gov/pubmed/28370647 http://dx.doi.org/10.1111/mec.14123 |
work_keys_str_mv | AT balaofrancisco adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT trucchiemiliano adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT wolfethomasm adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT haobaohai adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT lorenzomariateresa adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT baarjuliane adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT sedmanlaura adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT kosiolcarolin adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT ammanfabian adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT chasemarkw adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT hedrenmikael adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima AT paunovidiu adaptivesequenceevolutionisdrivenbybioticstressinapairoforchidspeciesdactylorhizawithdistinctecologicaloptima |