Cargando…
Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation
Ubiquitin linkage to cysteine is an unconventional modification targeting protein for degradation. However, the physiological regulation of cysteine ubiquitination is still mysterious. Here we found that ACAT2, a cellular enzyme converting cholesterol and fatty acid to cholesteryl esters, was ubiqui...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518634/ https://www.ncbi.nlm.nih.gov/pubmed/28604676 http://dx.doi.org/10.1038/ncb3551 |
_version_ | 1783251520950632448 |
---|---|
author | Wang, Yong-Jian Bian, Yan Luo, Jie Lu, Ming Xiong, Ying Guo, Shu-Yuan Yin, Hui-Yong Lin, Xu Li, Qin Chang, Catherine CY Chang, Ta-Yuan Li, Bo-Liang Song, Bao-Liang |
author_facet | Wang, Yong-Jian Bian, Yan Luo, Jie Lu, Ming Xiong, Ying Guo, Shu-Yuan Yin, Hui-Yong Lin, Xu Li, Qin Chang, Catherine CY Chang, Ta-Yuan Li, Bo-Liang Song, Bao-Liang |
author_sort | Wang, Yong-Jian |
collection | PubMed |
description | Ubiquitin linkage to cysteine is an unconventional modification targeting protein for degradation. However, the physiological regulation of cysteine ubiquitination is still mysterious. Here we found that ACAT2, a cellular enzyme converting cholesterol and fatty acid to cholesteryl esters, was ubiquitinated on cysteine 277 (C277) for degradation when lipid level was low. gp78/Insigs catalyzed K48-linked polyubiquitination on this C277. High concentration of cholesterol and fatty acid, however, induced cellular reactive oxygen species (ROS) that oxidized C277, rendering ACAT2 stabilization and subsequently elevated cholesteryl esters. Furthermore, ACAT2 knockout mice were more susceptible to HFD-associated insulin resistance. By contrast, expression of constitutively stable form of ACAT2 (C277A) resulted in higher insulin sensitivity. Together, these data indicate that lipid-induced stabilization of ACAT2 ameliorates lipotoxicity from excessive cholesterol and fatty acid. This unconventional cysteine ubiquitination of ACAT2 constitutes an important mechanism sensing lipid overload-induced ROS and fine-tuning lipid homeostasis. |
format | Online Article Text |
id | pubmed-5518634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-55186342017-12-12 Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation Wang, Yong-Jian Bian, Yan Luo, Jie Lu, Ming Xiong, Ying Guo, Shu-Yuan Yin, Hui-Yong Lin, Xu Li, Qin Chang, Catherine CY Chang, Ta-Yuan Li, Bo-Liang Song, Bao-Liang Nat Cell Biol Article Ubiquitin linkage to cysteine is an unconventional modification targeting protein for degradation. However, the physiological regulation of cysteine ubiquitination is still mysterious. Here we found that ACAT2, a cellular enzyme converting cholesterol and fatty acid to cholesteryl esters, was ubiquitinated on cysteine 277 (C277) for degradation when lipid level was low. gp78/Insigs catalyzed K48-linked polyubiquitination on this C277. High concentration of cholesterol and fatty acid, however, induced cellular reactive oxygen species (ROS) that oxidized C277, rendering ACAT2 stabilization and subsequently elevated cholesteryl esters. Furthermore, ACAT2 knockout mice were more susceptible to HFD-associated insulin resistance. By contrast, expression of constitutively stable form of ACAT2 (C277A) resulted in higher insulin sensitivity. Together, these data indicate that lipid-induced stabilization of ACAT2 ameliorates lipotoxicity from excessive cholesterol and fatty acid. This unconventional cysteine ubiquitination of ACAT2 constitutes an important mechanism sensing lipid overload-induced ROS and fine-tuning lipid homeostasis. 2017-06-12 2017-07 /pmc/articles/PMC5518634/ /pubmed/28604676 http://dx.doi.org/10.1038/ncb3551 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Wang, Yong-Jian Bian, Yan Luo, Jie Lu, Ming Xiong, Ying Guo, Shu-Yuan Yin, Hui-Yong Lin, Xu Li, Qin Chang, Catherine CY Chang, Ta-Yuan Li, Bo-Liang Song, Bao-Liang Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title | Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title_full | Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title_fullStr | Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title_full_unstemmed | Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title_short | Cholesterol and fatty acids regulate cysteine ubiquitination of ACAT2 through competitive oxidation |
title_sort | cholesterol and fatty acids regulate cysteine ubiquitination of acat2 through competitive oxidation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518634/ https://www.ncbi.nlm.nih.gov/pubmed/28604676 http://dx.doi.org/10.1038/ncb3551 |
work_keys_str_mv | AT wangyongjian cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT bianyan cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT luojie cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT luming cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT xiongying cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT guoshuyuan cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT yinhuiyong cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT linxu cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT liqin cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT changcatherinecy cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT changtayuan cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT liboliang cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation AT songbaoliang cholesterolandfattyacidsregulatecysteineubiquitinationofacat2throughcompetitiveoxidation |