Cargando…
Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution
Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518764/ https://www.ncbi.nlm.nih.gov/pubmed/28781930 http://dx.doi.org/10.1002/2016JA023644 |
_version_ | 1783251535949463552 |
---|---|
author | Lockwood, Mike Owens, Mathew J. Imber, Suzanne M. James, Matthew K. Bunce, Emma J. Yeoman, Timothy K. |
author_facet | Lockwood, Mike Owens, Mathew J. Imber, Suzanne M. James, Matthew K. Bunce, Emma J. Yeoman, Timothy K. |
author_sort | Lockwood, Mike |
collection | PubMed |
description | Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25. |
format | Online Article Text |
id | pubmed-5518764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55187642017-08-03 Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution Lockwood, Mike Owens, Mathew J. Imber, Suzanne M. James, Matthew K. Bunce, Emma J. Yeoman, Timothy K. J Geophys Res Space Phys Research Articles Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25. John Wiley and Sons Inc. 2017-06-05 2017-06 /pmc/articles/PMC5518764/ /pubmed/28781930 http://dx.doi.org/10.1002/2016JA023644 Text en ©2017. The Authors. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Lockwood, Mike Owens, Mathew J. Imber, Suzanne M. James, Matthew K. Bunce, Emma J. Yeoman, Timothy K. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title | Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title_full | Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title_fullStr | Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title_full_unstemmed | Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title_short | Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
title_sort | coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518764/ https://www.ncbi.nlm.nih.gov/pubmed/28781930 http://dx.doi.org/10.1002/2016JA023644 |
work_keys_str_mv | AT lockwoodmike coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution AT owensmathewj coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution AT imbersuzannem coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution AT jamesmatthewk coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution AT bunceemmaj coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution AT yeomantimothyk coronalandheliosphericmagneticfluxcirculationanditsrelationtoopensolarfluxevolution |