Cargando…
Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans
Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518996/ https://www.ncbi.nlm.nih.gov/pubmed/28727779 http://dx.doi.org/10.1371/journal.pntd.0005625 |
_version_ | 1783251562606362624 |
---|---|
author | Moyes, Catherine L. Vontas, John Martins, Ademir J. Ng, Lee Ching Koou, Sin Ying Dusfour, Isabelle Raghavendra, Kamaraju Pinto, João Corbel, Vincent David, Jean-Philippe Weetman, David |
author_facet | Moyes, Catherine L. Vontas, John Martins, Ademir J. Ng, Lee Ching Koou, Sin Ying Dusfour, Isabelle Raghavendra, Kamaraju Pinto, João Corbel, Vincent David, Jean-Philippe Weetman, David |
author_sort | Moyes, Catherine L. |
collection | PubMed |
description | Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance. |
format | Online Article Text |
id | pubmed-5518996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55189962017-08-07 Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans Moyes, Catherine L. Vontas, John Martins, Ademir J. Ng, Lee Ching Koou, Sin Ying Dusfour, Isabelle Raghavendra, Kamaraju Pinto, João Corbel, Vincent David, Jean-Philippe Weetman, David PLoS Negl Trop Dis Review Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance. Public Library of Science 2017-07-20 /pmc/articles/PMC5518996/ /pubmed/28727779 http://dx.doi.org/10.1371/journal.pntd.0005625 Text en © 2017 Moyes et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Review Moyes, Catherine L. Vontas, John Martins, Ademir J. Ng, Lee Ching Koou, Sin Ying Dusfour, Isabelle Raghavendra, Kamaraju Pinto, João Corbel, Vincent David, Jean-Philippe Weetman, David Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title_full | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title_fullStr | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title_full_unstemmed | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title_short | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans |
title_sort | contemporary status of insecticide resistance in the major aedes vectors of arboviruses infecting humans |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518996/ https://www.ncbi.nlm.nih.gov/pubmed/28727779 http://dx.doi.org/10.1371/journal.pntd.0005625 |
work_keys_str_mv | AT moyescatherinel contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT vontasjohn contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT martinsademirj contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT ngleeching contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT koousinying contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT dusfourisabelle contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT raghavendrakamaraju contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT pintojoao contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT corbelvincent contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT davidjeanphilippe contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans AT weetmandavid contemporarystatusofinsecticideresistanceinthemajoraedesvectorsofarbovirusesinfectinghumans |