Cargando…
Improving deep convolutional neural networks with mixed maxout units
Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that “non-maximal features are unable to deliver” and “feature mapping subspace pooling is insufficient,” we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifical...
Autores principales: | Zhao, Hui-zhen, Liu, Fu-xian, Li, Long-yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519034/ https://www.ncbi.nlm.nih.gov/pubmed/28727737 http://dx.doi.org/10.1371/journal.pone.0180049 |
Ejemplares similares
-
Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks
por: Wan, Cen, et al.
Publicado: (2019) -
Feedback Artificial Shuffled Shepherd Optimization-Based Deep Maxout Network for Human Emotion Recognition Using EEG Signals
por: Bhanumathi, K. S., et al.
Publicado: (2022) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
DOA Estimation Method Based on Improved Deep Convolutional Neural Network
por: Zhao, Fangzheng, et al.
Publicado: (2022) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023)