Cargando…
Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear s...
Autores principales: | Madi, Mahmoud K., Karameh, Fadi N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519212/ https://www.ncbi.nlm.nih.gov/pubmed/28727850 http://dx.doi.org/10.1371/journal.pone.0181513 |
Ejemplares similares
-
Double-Layer Cubature Kalman Filter for Nonlinear Estimation †
por: Yang, Feng, et al.
Publicado: (2019) -
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter
por: Song, Xuegang, et al.
Publicado: (2017) -
Hybrid Adaptive Cubature Kalman Filter with Unknown Variance of Measurement Noise
por: Shi, Yuepeng, et al.
Publicado: (2018) -
Attitude and Heading Estimation for Indoor Positioning Based on the Adaptive Cubature Kalman Filter
por: Geng, Jijun, et al.
Publicado: (2021) -
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
por: Tseng, Chien-Hao, et al.
Publicado: (2016)