Cargando…
Improved low-rank matrix recovery method for predicting miRNA-disease association
MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational...
Autores principales: | Peng, Li, Peng, Manman, Liao, Bo, Huang, Guohua, Liang, Wei, Li, Keqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519594/ https://www.ncbi.nlm.nih.gov/pubmed/28729528 http://dx.doi.org/10.1038/s41598-017-06201-3 |
Ejemplares similares
-
Network Consistency Projection for Human miRNA-Disease Associations Inference
por: Gu, Changlong, et al.
Publicado: (2016) -
Proximal iteratively reweighted algorithm for low-rank matrix recovery
por: Ma, Chao-Qun, et al.
Publicado: (2018) -
Rank-Based miRNA Signatures for Early Cancer Detection
por: Lauria, Mario
Publicado: (2014) -
Estimation of Overspread Underwater Acoustic Channel Based on Low-Rank Matrix Recovery
por: Li, Jie, et al.
Publicado: (2019) -
MCLPMDA: A novel method for miRNA‐disease association prediction based on matrix completion and label propagation
por: Yu, Sheng‐Peng, et al.
Publicado: (2018)