Cargando…

Dietary constraints can preclude the expression of an honest chemical sexual signal

Identifying the factors that underlie signal divergences remains challenging in studies of animal communication. Regarding the chemical signalling, different compounds can be found in some species but be absent in others. We hypothesized that if the costs that are associated with the expression of s...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Roa, Roberto, Sáiz, Jorge, Gómara, Belén, López, Pilar, Martín, José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519758/
https://www.ncbi.nlm.nih.gov/pubmed/28729717
http://dx.doi.org/10.1038/s41598-017-06323-8
Descripción
Sumario:Identifying the factors that underlie signal divergences remains challenging in studies of animal communication. Regarding the chemical signalling, different compounds can be found in some species but be absent in others. We hypothesized that if the costs that are associated with the expression of some compounds are too high, their presence in the signal may be restricted. However, these compounds may be expressed and be functional when those costs are relaxed. Vitamin E (α-tocopherol), a dietary compound with metabolic relevancy, acts as an honest chemical sexual signal in many lizards but no in others such as the Carpetan Rock lizard (Iberolacerta cyreni). We investigated whether dietary supplementation favours the expression of this vitamin in scents of I. cyreni. We show that dietary constraints can preclude the expression of vitamin E in chemical secretions of wild males because was expressed when it was experimentally provided in the diet. Vitamin E supplementation also heightened the immune response of males and increased the interest of their scent for females, highlighting the vitamin E as a chemical sexual signal in this species. We suggest that diet could decisively act as a driver of intra- and interspecific divergences in the chemical signalling of lizards.