Cargando…

Comparative transcriptome analysis of the floral transition in Rosa chinensis ‘Old Blush’ and R. odorata var. gigantea

The floral transition is a crucial developmental event, but little is known about the underlying regulatory networks in seasonally and continuously flowering roses. In this study, we compared the genetic basis of flowering in two rose species, Rosa chinensis ‘Old Blush’, which flowers continuously,...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Xuelian, Yu, Chao, Luo, Le, Wan, Huihua, Li, Yushu, Wang, Jia, Cheng, Tangren, Pan, Huitang, Zhang, Qixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519770/
https://www.ncbi.nlm.nih.gov/pubmed/28729527
http://dx.doi.org/10.1038/s41598-017-05850-8
Descripción
Sumario:The floral transition is a crucial developmental event, but little is known about the underlying regulatory networks in seasonally and continuously flowering roses. In this study, we compared the genetic basis of flowering in two rose species, Rosa chinensis ‘Old Blush’, which flowers continuously, and R. odorata var. gigantea, which blooms in early spring. Gene ontology (GO) terms related to methylation, light reaction, and starch metabolism were enriched in R. odorata var. gigantea and terms associated with sugar metabolism were enriched in R. chinensis ‘Old Blush’ during the floral transition. A MapMan analysis revealed that genes involved in hormone signaling mediate the floral transition in both taxa. Furthermore, differentially expressed genes (DEGs) involved in vernalization, photoperiod, gibberellin (GA), and starch metabolism pathways converged on integrators, e.g., LFY, AGL24, SOC1, CAL, and COLs, to regulate the floral transition in R. odorata var. gigantea, while DEGs related to photoperiod, sugar metabolism, and GA pathways, including COL16, LFY, AGL11, 6PGDH, GASA4, and BAM, modulated the floral transition in R. chinensis ‘Old Blush.’ Our analysis of the genes underlying the floral transition in roses with different patterns of flowering provides a basis for further functional studies.