Cargando…

Determination of Controlled Self‐Assembly of a Paracrystalline Material by Homology Modelling with Hybrid NMR and TEM

Controlling complexity, flexibility, and functionality of synthetic and biomimetic materials requires insight into how molecular functionalities can be exploited for steering their packing. A fused NDI‐salphen (NDI=naphthalene diimide) prototypic artificial photosynthesis material, DATZnS, is shown...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Brijith, Rombouts, Jeroen, Gupta, Karthick Babu Sai Sankar, Orru, Romano V. A., Lammertsma, Koop, de Groot, Huub J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519927/
https://www.ncbi.nlm.nih.gov/pubmed/28556025
http://dx.doi.org/10.1002/chem.201701172
Descripción
Sumario:Controlling complexity, flexibility, and functionality of synthetic and biomimetic materials requires insight into how molecular functionalities can be exploited for steering their packing. A fused NDI‐salphen (NDI=naphthalene diimide) prototypic artificial photosynthesis material, DATZnS, is shown to be comprised of a phenazine motif, in which the alignment of electric dipole moments in a P2/c supramolecular scaffold can be modulated with bulky substituents. They can also be switched between parallel stacks of dipoles running antiparallel in the DATZnS‐H compared with parallel stacks of dipoles in polar layers running in opposite directions in the DATZnS(3′‐NMe) parent compound. Spatial correlations obtained from HETCOR spectra, collected with a long cross polarization contact time of 2 ms, reveal an antiparallel stacking for the DATZnS‐H homologue. These constraints and limited data from TEM are used to construct a structural model within the P2/c space group determined by the molecular C (2) symmetry. By using homology modelling, a pseudo octahedral coordination of the Zn is shown to follow the packing‐induced chirality with enantiomeric pairs of the Λ and Δ forms alternating along antiparallel stacks. The model helps to understand how the steric hindrance modulates the self‐assembly in this novel class of fused materials by steric hindrance at the molecular level.