Cargando…
A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation
A metal‐free photoanode nanojunction architecture, composed of B‐doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one‐step approach. This type of nanojunction (s‐BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow char...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519949/ https://www.ncbi.nlm.nih.gov/pubmed/28520233 http://dx.doi.org/10.1002/anie.201703372 |
Sumario: | A metal‐free photoanode nanojunction architecture, composed of B‐doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one‐step approach. This type of nanojunction (s‐BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10‐fold higher photocurrent than bulk graphitic carbon nitride (G‐CN) photoanode, with a record photocurrent density of 103.2 μA cm(−2) at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon‐to‐current efficiency (IPCE) of ca. 10 % at 400 nm. Electrochemical impedance spectroscopy, Mott–Schottky plots, and intensity‐modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture. |
---|