Cargando…

Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications

[Image: see text] Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are con...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wuyuan, Martinelli, Jonathan, Peters, Joop A., van Hengst, Jacob M.A., Bouwmeester, Hans, Kramer, Evelien, Bonnet, Célia S., Szeremeta, Frédéric, Tóth, Éva, Djanashvili, Kristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520100/
https://www.ncbi.nlm.nih.gov/pubmed/28657291
http://dx.doi.org/10.1021/acsami.7b05912
_version_ 1783251754119331840
author Zhang, Wuyuan
Martinelli, Jonathan
Peters, Joop A.
van Hengst, Jacob M.A.
Bouwmeester, Hans
Kramer, Evelien
Bonnet, Célia S.
Szeremeta, Frédéric
Tóth, Éva
Djanashvili, Kristina
author_facet Zhang, Wuyuan
Martinelli, Jonathan
Peters, Joop A.
van Hengst, Jacob M.A.
Bouwmeester, Hans
Kramer, Evelien
Bonnet, Célia S.
Szeremeta, Frédéric
Tóth, Éva
Djanashvili, Kristina
author_sort Zhang, Wuyuan
collection PubMed
description [Image: see text] Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their function relies on water/proton-exchange between the pores and bulk water. Here we present a comprehensive study on the effects of PEGylation on the relaxometric properties of nanozeolite LTL (dimensions of 20 × 40 nm) ion-exchanged with paramagnetic Gd(III) ions. We evidence that as long as the surface grafting density of the PEG chains does not exceed the “mushroom” regime (conjugation of up to 6.2 wt % of PEG), Gd-LTL retains a remarkable longitudinal relaxivity (38 s(–1) mM(–1) at 7 T and 25 °C) as well as the pH-dependence of the longitudinal and transverse relaxation times. At higher PEG content, the more compact PEG layer (brush regime) limits proton/water diffusion and exchange between the interior of LTL and the bulk, with detrimental consequences on relaxivity. Furthermore, PEGylation of Gd-LTL dramatically decreases the leakage of toxic Gd(III) ions in biological media and in the presence of competing anions, which together with minimal cytotoxicity renders these materials promising probes for MRI applications.
format Online
Article
Text
id pubmed-5520100
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-55201002017-07-24 Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications Zhang, Wuyuan Martinelli, Jonathan Peters, Joop A. van Hengst, Jacob M.A. Bouwmeester, Hans Kramer, Evelien Bonnet, Célia S. Szeremeta, Frédéric Tóth, Éva Djanashvili, Kristina ACS Appl Mater Interfaces [Image: see text] Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their function relies on water/proton-exchange between the pores and bulk water. Here we present a comprehensive study on the effects of PEGylation on the relaxometric properties of nanozeolite LTL (dimensions of 20 × 40 nm) ion-exchanged with paramagnetic Gd(III) ions. We evidence that as long as the surface grafting density of the PEG chains does not exceed the “mushroom” regime (conjugation of up to 6.2 wt % of PEG), Gd-LTL retains a remarkable longitudinal relaxivity (38 s(–1) mM(–1) at 7 T and 25 °C) as well as the pH-dependence of the longitudinal and transverse relaxation times. At higher PEG content, the more compact PEG layer (brush regime) limits proton/water diffusion and exchange between the interior of LTL and the bulk, with detrimental consequences on relaxivity. Furthermore, PEGylation of Gd-LTL dramatically decreases the leakage of toxic Gd(III) ions in biological media and in the presence of competing anions, which together with minimal cytotoxicity renders these materials promising probes for MRI applications. American Chemical Society 2017-06-28 2017-07-19 /pmc/articles/PMC5520100/ /pubmed/28657291 http://dx.doi.org/10.1021/acsami.7b05912 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Zhang, Wuyuan
Martinelli, Jonathan
Peters, Joop A.
van Hengst, Jacob M.A.
Bouwmeester, Hans
Kramer, Evelien
Bonnet, Célia S.
Szeremeta, Frédéric
Tóth, Éva
Djanashvili, Kristina
Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title_full Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title_fullStr Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title_full_unstemmed Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title_short Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications
title_sort surface peg grafting density determines magnetic relaxation properties of gd-loaded porous nanoparticles for mr imaging applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520100/
https://www.ncbi.nlm.nih.gov/pubmed/28657291
http://dx.doi.org/10.1021/acsami.7b05912
work_keys_str_mv AT zhangwuyuan surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT martinellijonathan surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT petersjoopa surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT vanhengstjacobma surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT bouwmeesterhans surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT kramerevelien surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT bonnetcelias surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT szeremetafrederic surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT totheva surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications
AT djanashvilikristina surfacepeggraftingdensitydeterminesmagneticrelaxationpropertiesofgdloadedporousnanoparticlesformrimagingapplications