Cargando…
T-cell-dependent mechanisms promote Ebola VLP-induced antibody responses, but are dispensable for vaccine-mediated protection
Humoral responses are essential for the protective efficacy of most Ebola virus (EBOV) candidate vaccines; however, the in vivo development of protective anti-EBOV B-cell responses is poorly defined. Here, by using the virus-like particle (VLP) as a model antigen, we demonstrate that humoral respons...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520308/ https://www.ncbi.nlm.nih.gov/pubmed/28588288 http://dx.doi.org/10.1038/emi.2017.31 |
Sumario: | Humoral responses are essential for the protective efficacy of most Ebola virus (EBOV) candidate vaccines; however, the in vivo development of protective anti-EBOV B-cell responses is poorly defined. Here, by using the virus-like particle (VLP) as a model antigen, we demonstrate that humoral responses are generated through follicular B-cell and T-cell-dependent mechanisms in a mouse model of EBOV infection. In addition, we show that the inclusion of the clinical-grade dsRNA adjuvant known as poly-ICLC in VLP vaccinations both augments and sustains germinal center B-cell reactions, antigen-specific B-cell frequencies and anti-EBOV serum titers. Finally, we used mice that were deficient in either B-cells or T-cell-dependent antibody production to distinguish the contributing roles of EBOV humoral responses. We demonstrate that while anti-EBOV antibody responses promote protection, VLP-vaccinated mice can survive EBOV infection in the absence of detectable anti-EBOV antibodies. Moreover, we found that adjuvant signaling could circumvent the complete requirement for B-cell immunity in protection against EBOV. Collectively, these studies may prove valuable for the characterization and future development of additional EBOV vaccine candidates. |
---|