Cargando…
Settings and artefacts relevant for Doppler ultrasound in large vessel vasculitis
Ultrasound is used increasingly for diagnosing large vessel vasculitis (LVV). The application of Doppler in LVV is very different from in arthritic conditions. This paper aims to explain the most important Doppler parameters, including spectral Doppler, and how the settings differ from those used in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520338/ https://www.ncbi.nlm.nih.gov/pubmed/28728567 http://dx.doi.org/10.1186/s13075-017-1374-1 |
Sumario: | Ultrasound is used increasingly for diagnosing large vessel vasculitis (LVV). The application of Doppler in LVV is very different from in arthritic conditions. This paper aims to explain the most important Doppler parameters, including spectral Doppler, and how the settings differ from those used in arthritic conditions and provide recommendations for optimal adjustments. This is addressed through relevant Doppler physics, focusing, for example, on the Doppler shift equation and how angle correction ensures correctly displayed blood velocity. Recommendations for optimal settings are given, focusing especially on pulse repetition frequency (PRF), gain and Doppler frequency and how they impact on detection of flow. Doppler artefacts are inherent and may be affected by the adjustment of settings. The most important artefacts to be aware of, and to be able to eliminate or minimize, are random noise and blooming, aliasing and motion artefacts. Random noise and blooming artefacts can be eliminated by lowering the Doppler gain. Aliasing and motion artefacts occur when the PRF is set too low, and correct adjustment of the PRF is crucial. Some artefacts, like mirror and reverberation artefacts, cannot be eliminated and should therefore be recognised when they occur. The commonly encountered artefacts, their importance for image interpretation and how to adjust Doppler setting in order to eliminate or minimize them are explained thoroughly with imaging examples in this review. |
---|