Cargando…
Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease
Apoptosis is a carefully orchestrated and tightly controlled form of cell death, conserved across metazoans. As the executioners of apoptotic cell death, cysteine-dependent aspartate-directed proteases (caspases) are critical drivers of this cellular disassembly. Early studies of genetically program...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520457/ https://www.ncbi.nlm.nih.gov/pubmed/28362431 http://dx.doi.org/10.1038/cdd.2017.47 |
_version_ | 1783251817310715904 |
---|---|
author | Fogarty, Caitlin E Bergmann, Andreas |
author_facet | Fogarty, Caitlin E Bergmann, Andreas |
author_sort | Fogarty, Caitlin E |
collection | PubMed |
description | Apoptosis is a carefully orchestrated and tightly controlled form of cell death, conserved across metazoans. As the executioners of apoptotic cell death, cysteine-dependent aspartate-directed proteases (caspases) are critical drivers of this cellular disassembly. Early studies of genetically programmed cell death demonstrated that the selective activation of caspases induces apoptosis and the precise elimination of excess cells, thereby sculpting structures and refining tissues. However, over the past decade there has been a fundamental shift in our understanding of the roles of caspases during cell death—a shift precipitated by the revelation that apoptotic cells actively engage with their surrounding environment throughout the death process, and caspases can trigger a myriad of signals, some of which drive concurrent cell proliferation regenerating damaged structures and building up lost tissues. This caspase-driven compensatory proliferation is referred to as apoptosis-induced proliferation (AiP). Diverse mechanisms of AiP have been found across species, ranging from planaria to mammals. In this review, we summarize the current knowledge of AiP and we highlight recent advances in the field including the involvement of reactive oxygen species and macrophage-like immune cells in one form of AiP, novel regulatory mechanisms affecting caspases during AiP, and emerging clinical data demonstrating the critical importance of AiP in cancer. |
format | Online Article Text |
id | pubmed-5520457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-55204572017-08-01 Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease Fogarty, Caitlin E Bergmann, Andreas Cell Death Differ Review Apoptosis is a carefully orchestrated and tightly controlled form of cell death, conserved across metazoans. As the executioners of apoptotic cell death, cysteine-dependent aspartate-directed proteases (caspases) are critical drivers of this cellular disassembly. Early studies of genetically programmed cell death demonstrated that the selective activation of caspases induces apoptosis and the precise elimination of excess cells, thereby sculpting structures and refining tissues. However, over the past decade there has been a fundamental shift in our understanding of the roles of caspases during cell death—a shift precipitated by the revelation that apoptotic cells actively engage with their surrounding environment throughout the death process, and caspases can trigger a myriad of signals, some of which drive concurrent cell proliferation regenerating damaged structures and building up lost tissues. This caspase-driven compensatory proliferation is referred to as apoptosis-induced proliferation (AiP). Diverse mechanisms of AiP have been found across species, ranging from planaria to mammals. In this review, we summarize the current knowledge of AiP and we highlight recent advances in the field including the involvement of reactive oxygen species and macrophage-like immune cells in one form of AiP, novel regulatory mechanisms affecting caspases during AiP, and emerging clinical data demonstrating the critical importance of AiP in cancer. Nature Publishing Group 2017-08 2017-03-31 /pmc/articles/PMC5520457/ /pubmed/28362431 http://dx.doi.org/10.1038/cdd.2017.47 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Review Fogarty, Caitlin E Bergmann, Andreas Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title | Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title_full | Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title_fullStr | Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title_full_unstemmed | Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title_short | Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
title_sort | killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520457/ https://www.ncbi.nlm.nih.gov/pubmed/28362431 http://dx.doi.org/10.1038/cdd.2017.47 |
work_keys_str_mv | AT fogartycaitline killerscreatingnewlifecaspasesdriveapoptosisinducedproliferationintissuerepairanddisease AT bergmannandreas killerscreatingnewlifecaspasesdriveapoptosisinducedproliferationintissuerepairanddisease |