Cargando…

Blur Adaptation to Central Retinal Disease

PURPOSE: The long-term, low-resolution vision experienced by individuals affected by retinal disease that causes central vision loss (CVL) may change their perception of blur through adaptation. This study used a short-term adaptation paradigm to evaluate adaptation to blur and sharpness in patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Vera-Diaz, Fuensanta A., Woods, Russell L., Peli, Eli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520677/
https://www.ncbi.nlm.nih.gov/pubmed/28728172
http://dx.doi.org/10.1167/iovs.16-20849
Descripción
Sumario:PURPOSE: The long-term, low-resolution vision experienced by individuals affected by retinal disease that causes central vision loss (CVL) may change their perception of blur through adaptation. This study used a short-term adaptation paradigm to evaluate adaptation to blur and sharpness in patients with CVL. METHODS: A variation of Webster's procedure was used to measure the point of subjective neutrality (PSN). The image that appeared normal after adaptation to each of seven blur and sharpness levels (PSN) was measured in 12 patients with CVL (20/60 to 20/320) and 5 subjects with normal sight (NS). Patients with CVL used a preferred retinal locus to view the images. Small control studies investigated the effects of long-term and medium-term (1 hour) defocus and diffusive blur. RESULTS: Adaptation was reliably measured in patients with CVL and in the peripheral vision of NS subjects. The shape of adaptation curves was similar in patients with CVL and both central and peripheral vision of NS subjects. No statistical correlations were found between adaptation and age, visual acuity, retinal eccentricity, or contrast sensitivity. Long-term blur experience by a non-CVL myopic participant caused a shift in the adaptation function. Conversely, medium-term adaptation did not cause a shift in the adaptation function. CONCLUSIONS: Blur and sharp short-term adaptation occurred in peripheral vision of normal and diseased retinas. In most patients with CVL, neither adaptation nor blur perception was affected by long-term attention to peripheral low-resolution vision. The impact of blur/sharp adaptation on the benefit of image enhancement techniques for patients with CVL is discussed.