Cargando…
Drought yield index to select high yielding rice lines under different drought stress severities
BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas....
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer New York
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520844/ https://www.ncbi.nlm.nih.gov/pubmed/27234249 http://dx.doi.org/10.1186/1939-8433-5-31 |
_version_ | 1783251879094910976 |
---|---|
author | Raman, Anitha Verulkar, Satish Mandal, Nimai Variar, Mukund Shukla, V Dwivedi, J Singh, B Singh, O Swain, Padmini Mall, Ashutosh Robin, S Chandrababu, R Jain, Abhinav Ram, Tilatoo Hittalmani, Shailaja Haefele, Stephan Piepho, Hans-Peter Kumar, Arvind |
author_facet | Raman, Anitha Verulkar, Satish Mandal, Nimai Variar, Mukund Shukla, V Dwivedi, J Singh, B Singh, O Swain, Padmini Mall, Ashutosh Robin, S Chandrababu, R Jain, Abhinav Ram, Tilatoo Hittalmani, Shailaja Haefele, Stephan Piepho, Hans-Peter Kumar, Arvind |
author_sort | Raman, Anitha |
collection | PubMed |
description | BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. RESULTS: ARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations. CONCLUSION: For highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations. |
format | Online Article Text |
id | pubmed-5520844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer New York |
record_format | MEDLINE/PubMed |
spelling | pubmed-55208442017-07-27 Drought yield index to select high yielding rice lines under different drought stress severities Raman, Anitha Verulkar, Satish Mandal, Nimai Variar, Mukund Shukla, V Dwivedi, J Singh, B Singh, O Swain, Padmini Mall, Ashutosh Robin, S Chandrababu, R Jain, Abhinav Ram, Tilatoo Hittalmani, Shailaja Haefele, Stephan Piepho, Hans-Peter Kumar, Arvind Rice (N Y) Research BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. RESULTS: ARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations. CONCLUSION: For highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations. Springer New York 2012-10-04 /pmc/articles/PMC5520844/ /pubmed/27234249 http://dx.doi.org/10.1186/1939-8433-5-31 Text en © 2012 Raman et al. licensee Springer. 2012 This article is published under license to BioMed Central Ltd. licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Raman, Anitha Verulkar, Satish Mandal, Nimai Variar, Mukund Shukla, V Dwivedi, J Singh, B Singh, O Swain, Padmini Mall, Ashutosh Robin, S Chandrababu, R Jain, Abhinav Ram, Tilatoo Hittalmani, Shailaja Haefele, Stephan Piepho, Hans-Peter Kumar, Arvind Drought yield index to select high yielding rice lines under different drought stress severities |
title | Drought yield index to select high yielding rice lines under different drought stress severities |
title_full | Drought yield index to select high yielding rice lines under different drought stress severities |
title_fullStr | Drought yield index to select high yielding rice lines under different drought stress severities |
title_full_unstemmed | Drought yield index to select high yielding rice lines under different drought stress severities |
title_short | Drought yield index to select high yielding rice lines under different drought stress severities |
title_sort | drought yield index to select high yielding rice lines under different drought stress severities |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520844/ https://www.ncbi.nlm.nih.gov/pubmed/27234249 http://dx.doi.org/10.1186/1939-8433-5-31 |
work_keys_str_mv | AT ramananitha droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT verulkarsatish droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT mandalnimai droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT variarmukund droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT shuklav droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT dwivedij droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT singhb droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT singho droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT swainpadmini droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT mallashutosh droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT robins droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT chandrababur droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT jainabhinav droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT ramtilatoo droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT hittalmanishailaja droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT haefelestephan droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT piephohanspeter droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities AT kumararvind droughtyieldindextoselecthighyieldingricelinesunderdifferentdroughtstressseverities |