Cargando…

A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling

The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquit...

Descripción completa

Detalles Bibliográficos
Autores principales: Gatliff, Jemma, East, Daniel A, Singh, Aarti, Alvarez, Maria Soledad, Frison, Michele, Matic, Ivana, Ferraina, Caterina, Sampson, Natalie, Turkheimer, Federico, Campanella, Michelangelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520880/
https://www.ncbi.nlm.nih.gov/pubmed/28640253
http://dx.doi.org/10.1038/cddis.2017.186
_version_ 1783251884960645120
author Gatliff, Jemma
East, Daniel A
Singh, Aarti
Alvarez, Maria Soledad
Frison, Michele
Matic, Ivana
Ferraina, Caterina
Sampson, Natalie
Turkheimer, Federico
Campanella, Michelangelo
author_facet Gatliff, Jemma
East, Daniel A
Singh, Aarti
Alvarez, Maria Soledad
Frison, Michele
Matic, Ivana
Ferraina, Caterina
Sampson, Natalie
Turkheimer, Federico
Campanella, Michelangelo
author_sort Gatliff, Jemma
collection PubMed
description The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca(2+) signaling leading to a parallel increase in the cytosolic Ca(2+) pools that activate the Ca(2+)-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca(2+) uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca(2+) dynamics and redox transients in neuronal cytotoxicity.
format Online
Article
Text
id pubmed-5520880
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-55208802017-07-27 A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling Gatliff, Jemma East, Daniel A Singh, Aarti Alvarez, Maria Soledad Frison, Michele Matic, Ivana Ferraina, Caterina Sampson, Natalie Turkheimer, Federico Campanella, Michelangelo Cell Death Dis Original Article The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca(2+) signaling leading to a parallel increase in the cytosolic Ca(2+) pools that activate the Ca(2+)-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca(2+) uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca(2+) dynamics and redox transients in neuronal cytotoxicity. Nature Publishing Group 2017-06 2017-06-22 /pmc/articles/PMC5520880/ /pubmed/28640253 http://dx.doi.org/10.1038/cddis.2017.186 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Original Article
Gatliff, Jemma
East, Daniel A
Singh, Aarti
Alvarez, Maria Soledad
Frison, Michele
Matic, Ivana
Ferraina, Caterina
Sampson, Natalie
Turkheimer, Federico
Campanella, Michelangelo
A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title_full A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title_fullStr A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title_full_unstemmed A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title_short A role for TSPO in mitochondrial Ca(2+) homeostasis and redox stress signaling
title_sort role for tspo in mitochondrial ca(2+) homeostasis and redox stress signaling
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520880/
https://www.ncbi.nlm.nih.gov/pubmed/28640253
http://dx.doi.org/10.1038/cddis.2017.186
work_keys_str_mv AT gatliffjemma arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT eastdaniela arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT singhaarti arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT alvarezmariasoledad arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT frisonmichele arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT maticivana arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT ferrainacaterina arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT sampsonnatalie arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT turkheimerfederico arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT campanellamichelangelo arolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT gatliffjemma rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT eastdaniela rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT singhaarti rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT alvarezmariasoledad rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT frisonmichele rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT maticivana rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT ferrainacaterina rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT sampsonnatalie rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT turkheimerfederico rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling
AT campanellamichelangelo rolefortspoinmitochondrialca2homeostasisandredoxstresssignaling