Cargando…
Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism
The occurrence and progress of colon cancer are closely associated with obesity. Therefore, the lipid metabolism, especially fatty acid metabolism, is a significant section of energy homeostasis in colon cancer cells, and it affects many important cellular processes. Oroxylin A is one of the main bi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520917/ https://www.ncbi.nlm.nih.gov/pubmed/28594405 http://dx.doi.org/10.1038/cddis.2017.261 |
_version_ | 1783251893565259776 |
---|---|
author | Ni, Ting He, Zihao Dai, Yuanyuan Yao, Jingyue Guo, Qinglong Wei, Libin |
author_facet | Ni, Ting He, Zihao Dai, Yuanyuan Yao, Jingyue Guo, Qinglong Wei, Libin |
author_sort | Ni, Ting |
collection | PubMed |
description | The occurrence and progress of colon cancer are closely associated with obesity. Therefore, the lipid metabolism, especially fatty acid metabolism, is a significant section of energy homeostasis in colon cancer cells, and it affects many important cellular processes. Oroxylin A is one of the main bioactive flavonoids of Scutellariae radix, which has a strong anticancer effect but low toxicity to normal tissue. In previous studies, we have proved that oroxylin A reprogrammes metabolism of cancer cells by inhibiting glycolysis. Here, we further investigated the metabolism-modulating effects of oroxylin A on the fatty acid metabolism in colon cancer cells under hypoxia. We found that HIF1α upregulated adipophilin, fatty acid synthase and sterol regulatory element-binding protein 1, and downregulated carnitine palmitoyltransferase 1 (CPT1), resulting in the promoted lipid uptake and transport, increased de novo fatty acid synthesis and suppressed fatty acid oxidation. Oroxylin A inactivated HIF1α and reprogrammed fatty acid metabolism of HCT116 cells, decreasing intracellular fatty acid level and enhancing fatty acid oxidation. Furthermore, the rapid decrease of fatty acid level caused by oroxylin A inhibited the nuclear translocation of β-cantenin and inactivated the Wnt pathway, arousing cell cycle arrest in G2/M phase. In vivo studies demonstrated that high-fat diet increased the incidence of colon cancer and accelerated tumor development. Importantly, besides the growth inhibitory effects on colon cancer xenograft, oroxylin A prevented carcinogenesis and delayed progress of primary colon cancer as well. Our studies enriched the metabolic regulatory mechanism of oroxylin A, and suggested that oroxylin A was a potent candidate for the treatment and prevention of colorectal cancer. |
format | Online Article Text |
id | pubmed-5520917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-55209172017-07-27 Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism Ni, Ting He, Zihao Dai, Yuanyuan Yao, Jingyue Guo, Qinglong Wei, Libin Cell Death Dis Original Article The occurrence and progress of colon cancer are closely associated with obesity. Therefore, the lipid metabolism, especially fatty acid metabolism, is a significant section of energy homeostasis in colon cancer cells, and it affects many important cellular processes. Oroxylin A is one of the main bioactive flavonoids of Scutellariae radix, which has a strong anticancer effect but low toxicity to normal tissue. In previous studies, we have proved that oroxylin A reprogrammes metabolism of cancer cells by inhibiting glycolysis. Here, we further investigated the metabolism-modulating effects of oroxylin A on the fatty acid metabolism in colon cancer cells under hypoxia. We found that HIF1α upregulated adipophilin, fatty acid synthase and sterol regulatory element-binding protein 1, and downregulated carnitine palmitoyltransferase 1 (CPT1), resulting in the promoted lipid uptake and transport, increased de novo fatty acid synthesis and suppressed fatty acid oxidation. Oroxylin A inactivated HIF1α and reprogrammed fatty acid metabolism of HCT116 cells, decreasing intracellular fatty acid level and enhancing fatty acid oxidation. Furthermore, the rapid decrease of fatty acid level caused by oroxylin A inhibited the nuclear translocation of β-cantenin and inactivated the Wnt pathway, arousing cell cycle arrest in G2/M phase. In vivo studies demonstrated that high-fat diet increased the incidence of colon cancer and accelerated tumor development. Importantly, besides the growth inhibitory effects on colon cancer xenograft, oroxylin A prevented carcinogenesis and delayed progress of primary colon cancer as well. Our studies enriched the metabolic regulatory mechanism of oroxylin A, and suggested that oroxylin A was a potent candidate for the treatment and prevention of colorectal cancer. Nature Publishing Group 2017-06 2017-06-08 /pmc/articles/PMC5520917/ /pubmed/28594405 http://dx.doi.org/10.1038/cddis.2017.261 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Article Ni, Ting He, Zihao Dai, Yuanyuan Yao, Jingyue Guo, Qinglong Wei, Libin Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title | Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title_full | Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title_fullStr | Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title_full_unstemmed | Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title_short | Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism |
title_sort | oroxylin a suppresses the development and growth of colorectal cancer through reprogram of hif1α-modulated fatty acid metabolism |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520917/ https://www.ncbi.nlm.nih.gov/pubmed/28594405 http://dx.doi.org/10.1038/cddis.2017.261 |
work_keys_str_mv | AT niting oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism AT hezihao oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism AT daiyuanyuan oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism AT yaojingyue oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism AT guoqinglong oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism AT weilibin oroxylinasuppressesthedevelopmentandgrowthofcolorectalcancerthroughreprogramofhif1amodulatedfattyacidmetabolism |