Cargando…

Pair Feeding, but Not Insulin, Phloridzin, or Rosiglitazone Treatment, Curtails Markers of β-Cell Dedifferentiation in db/db Mice

β-Cell failure is a hallmark of type 2 diabetes. Among several cellular biological mechanisms of cellular dysfunction, we and others have recently proposed that dedifferentiation of β-cells can explain the slowly progressive onset and partial reversibility of β-cell failure. Accordingly, we provided...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishida, Emi, Kim-Muller, Ja Young, Accili, Domenico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521857/
https://www.ncbi.nlm.nih.gov/pubmed/28506962
http://dx.doi.org/10.2337/db16-1213
Descripción
Sumario:β-Cell failure is a hallmark of type 2 diabetes. Among several cellular biological mechanisms of cellular dysfunction, we and others have recently proposed that dedifferentiation of β-cells can explain the slowly progressive onset and partial reversibility of β-cell failure. Accordingly, we provided evidence of such processes in humans and experimental animal models of insulin-resistant diabetes. In this study, we asked whether β-cell dedifferentiation can be prevented with diet or pharmacological treatment of diabetes. db/db mice, a widely used model of insulin-resistant diabetes and obesity, were either pair fed or treated with the Sglt inhibitor phloridzin, the insulin-sensitizer rosiglitazone, or insulin. All treatments were equally efficacious in reducing plasma glucose levels. Pair feeding and phloridzin also resulted in significant weight loss. However, pair feeding among the four treatments resulted in a reduction of β-cell dedifferentiation, as assessed by Foxo1 and Aldh1a3 immunohistochemistry. The effect of diet to partly restore β-cell function is consistent with data in human diabetes and provides another potential mechanism by which lifestyle changes act as an effective intervention against diabetes progression.