Cargando…

Compared planning dosimetry of TOMO, VMAT and IMRT in rectal cancer with different simulated positions

OBJECTIVES: To compare treatment plans for helical tomotherapy (TOMO), volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for locally advanced rectal cancer (LARC). MATERIALS AND METHODS: This retrospective study from December 2010 to June 2013 included 20 patients w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Jang-Chun, Tsai, Jo-Ting, Chen, Li-Jhen, Li, Ming-Hsien, Liu, Wei-Hsiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522046/
https://www.ncbi.nlm.nih.gov/pubmed/28159930
http://dx.doi.org/10.18632/oncotarget.14923
Descripción
Sumario:OBJECTIVES: To compare treatment plans for helical tomotherapy (TOMO), volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for locally advanced rectal cancer (LARC). MATERIALS AND METHODS: This retrospective study from December 2010 to June 2013 included 20 patients with LARC who received neoadjuvant concurrent chemoradiotherapy (CCRT) with radiation doses of greater than 50.4 Gy. Dosimetric quality was evaluated based on doses to organs at risk (OARs), including small bowel, urinary bladder and bilateral femoral head, over the same coverage of the clinical target volume (CTV). RESULTS: In supine comparison of IMRT with VMAT, VMAT treatment plan had a lower hot spot dose (p=0.0154) and better conformity index (CI, p=0.0036) and homogeneity index (HI, p=0.0246). Lower bladder V34.98 (p=0.0008), V40 (p=0.0058), mean dose (p<0.0001), femoral head mean dose (p=0.0089), V30 (p<0.0001), V40 (p=0.0013) and better CI (p<0.0001) and HI (p=0.0001) were observed for TOMO compared with IMRT. Patients with LARC receiving TOMO planning had lower bladder V34.98 (p=0.0021), V40 (p=0.0055), mean dose (p=0.0039), femoral head mean dose (p=0.0060), V30 (p<0.0001), and V40 (p=0.0044) and better CI (p=0.0157) and HI (p=0.0292) than VMAT. Comparing prone and supine position image planning, there were no significant differences, including in OARs in the three planning systems, except for lower bladder V34.98 (p=0.0403) in the supine position using TOMO. CONCLUSIONS: Using modern radiation techniques, neither prone nor supine positions provide better values for OARs. TOMO was superior to IMRT and VMAT in sparing OARs and planning quality parameters.