Cargando…
FHL2 interacts with iASPP and impacts the biological functions of leukemia cells
iASPP is an inhibitory member of apoptosis-stimulating proteins of p53 (ASPP) family, which inhibits p53-dependent apoptosis. iASPP was highly expressed in acute leukemia, inhibited leukemia cells apoptosis and promoted leukemogenesis. In order to clarify its mechanism, a yeast two-hybrid screen was...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522200/ https://www.ncbi.nlm.nih.gov/pubmed/28402264 http://dx.doi.org/10.18632/oncotarget.16617 |
Sumario: | iASPP is an inhibitory member of apoptosis-stimulating proteins of p53 (ASPP) family, which inhibits p53-dependent apoptosis. iASPP was highly expressed in acute leukemia, inhibited leukemia cells apoptosis and promoted leukemogenesis. In order to clarify its mechanism, a yeast two-hybrid screen was performed and FHL2 was identified for the first time as one of the binding proteins of iASPP. FHL2 was highly expressed in K562 and Kasumi-1 cells. FHL2 and iASPP interacted with each other and co-localized in both nucleus and cytoplasm. Either FHL2 or iASPP silenced could reduce cell proliferation, induce cell cycle arrest at G0/G1 phase, and increase cell apoptosis. Western blot analysis showed that the level of p21 and p27 increased, CDK4, E2F1, Cyclin E and anti-apoptotic proteins Bcl-2 and Bcl-xL reduced. Interestingly, when FHL2 was knocked down, the protein expression level of iASPP also decreased. Similarly, the expression of FHL2 would reduce when iASPP was silenced. These results indicated that FHL2 might be a novel potential target for acute myelocytic leukemia treatment. |
---|