Cargando…
Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively fo...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522339/ https://www.ncbi.nlm.nih.gov/pubmed/28795080 http://dx.doi.org/10.1063/1.4995258 |
_version_ | 1783252153479987200 |
---|---|
author | Sokolowski-Tinten, K. Shen, X. Zheng, Q. Chase, T. Coffee, R. Jerman, M. Li, R. K. Ligges, M. Makasyuk, I. Mo, M. Reid, A. H. Rethfeld, B. Vecchione, T. Weathersby, S. P. Dürr, H. A. Wang, X. J. |
author_facet | Sokolowski-Tinten, K. Shen, X. Zheng, Q. Chase, T. Coffee, R. Jerman, M. Li, R. K. Ligges, M. Makasyuk, I. Mo, M. Reid, A. H. Rethfeld, B. Vecchione, T. Weathersby, S. P. Dürr, H. A. Wang, X. J. |
author_sort | Sokolowski-Tinten, K. |
collection | PubMed |
description | We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. |
format | Online Article Text |
id | pubmed-5522339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Crystallographic Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-55223392017-08-09 Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction Sokolowski-Tinten, K. Shen, X. Zheng, Q. Chase, T. Coffee, R. Jerman, M. Li, R. K. Ligges, M. Makasyuk, I. Mo, M. Reid, A. H. Rethfeld, B. Vecchione, T. Weathersby, S. P. Dürr, H. A. Wang, X. J. Struct Dyn Articles We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. American Crystallographic Association 2017-07-21 /pmc/articles/PMC5522339/ /pubmed/28795080 http://dx.doi.org/10.1063/1.4995258 Text en © 2017 Author(s). 2329-7778/2017/4(5)/054501/8 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Sokolowski-Tinten, K. Shen, X. Zheng, Q. Chase, T. Coffee, R. Jerman, M. Li, R. K. Ligges, M. Makasyuk, I. Mo, M. Reid, A. H. Rethfeld, B. Vecchione, T. Weathersby, S. P. Dürr, H. A. Wang, X. J. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title | Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title_full | Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title_fullStr | Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title_full_unstemmed | Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title_short | Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction |
title_sort | electron-lattice energy relaxation in laser-excited thin-film au-insulator heterostructures studied by ultrafast mev electron diffraction |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522339/ https://www.ncbi.nlm.nih.gov/pubmed/28795080 http://dx.doi.org/10.1063/1.4995258 |
work_keys_str_mv | AT sokolowskitintenk electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT shenx electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT zhengq electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT chaset electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT coffeer electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT jermanm electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT lirk electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT liggesm electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT makasyuki electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT mom electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT reidah electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT rethfeldb electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT vecchionet electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT weathersbysp electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT durrha electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction AT wangxj electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction |