Cargando…

Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sokolowski-Tinten, K., Shen, X., Zheng, Q., Chase, T., Coffee, R., Jerman, M., Li, R. K., Ligges, M., Makasyuk, I., Mo, M., Reid, A. H., Rethfeld, B., Vecchione, T., Weathersby, S. P., Dürr, H. A., Wang, X. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522339/
https://www.ncbi.nlm.nih.gov/pubmed/28795080
http://dx.doi.org/10.1063/1.4995258
_version_ 1783252153479987200
author Sokolowski-Tinten, K.
Shen, X.
Zheng, Q.
Chase, T.
Coffee, R.
Jerman, M.
Li, R. K.
Ligges, M.
Makasyuk, I.
Mo, M.
Reid, A. H.
Rethfeld, B.
Vecchione, T.
Weathersby, S. P.
Dürr, H. A.
Wang, X. J.
author_facet Sokolowski-Tinten, K.
Shen, X.
Zheng, Q.
Chase, T.
Coffee, R.
Jerman, M.
Li, R. K.
Ligges, M.
Makasyuk, I.
Mo, M.
Reid, A. H.
Rethfeld, B.
Vecchione, T.
Weathersby, S. P.
Dürr, H. A.
Wang, X. J.
author_sort Sokolowski-Tinten, K.
collection PubMed
description We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.
format Online
Article
Text
id pubmed-5522339
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Crystallographic Association
record_format MEDLINE/PubMed
spelling pubmed-55223392017-08-09 Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction Sokolowski-Tinten, K. Shen, X. Zheng, Q. Chase, T. Coffee, R. Jerman, M. Li, R. K. Ligges, M. Makasyuk, I. Mo, M. Reid, A. H. Rethfeld, B. Vecchione, T. Weathersby, S. P. Dürr, H. A. Wang, X. J. Struct Dyn Articles We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. American Crystallographic Association 2017-07-21 /pmc/articles/PMC5522339/ /pubmed/28795080 http://dx.doi.org/10.1063/1.4995258 Text en © 2017 Author(s). 2329-7778/2017/4(5)/054501/8 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Articles
Sokolowski-Tinten, K.
Shen, X.
Zheng, Q.
Chase, T.
Coffee, R.
Jerman, M.
Li, R. K.
Ligges, M.
Makasyuk, I.
Mo, M.
Reid, A. H.
Rethfeld, B.
Vecchione, T.
Weathersby, S. P.
Dürr, H. A.
Wang, X. J.
Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title_full Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title_fullStr Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title_full_unstemmed Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title_short Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction
title_sort electron-lattice energy relaxation in laser-excited thin-film au-insulator heterostructures studied by ultrafast mev electron diffraction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522339/
https://www.ncbi.nlm.nih.gov/pubmed/28795080
http://dx.doi.org/10.1063/1.4995258
work_keys_str_mv AT sokolowskitintenk electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT shenx electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT zhengq electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT chaset electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT coffeer electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT jermanm electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT lirk electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT liggesm electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT makasyuki electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT mom electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT reidah electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT rethfeldb electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT vecchionet electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT weathersbysp electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT durrha electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction
AT wangxj electronlatticeenergyrelaxationinlaserexcitedthinfilmauinsulatorheterostructuresstudiedbyultrafastmevelectrondiffraction