Cargando…
Gap junction-mediated regulation of endothelial cellular stiffness
Endothelial monolayers have shown the ability to signal each other through gap junctions. Gap junction-mediated cell-cell interactions have been implicated in the modulation of endothelial cell functions during vascular inflammation. Inflammatory mediators alter the mechanical properties of endothel...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522438/ https://www.ncbi.nlm.nih.gov/pubmed/28733642 http://dx.doi.org/10.1038/s41598-017-06463-x |
Sumario: | Endothelial monolayers have shown the ability to signal each other through gap junctions. Gap junction-mediated cell-cell interactions have been implicated in the modulation of endothelial cell functions during vascular inflammation. Inflammatory mediators alter the mechanical properties of endothelial cells, although the exact role of gap junctions in this process remains unclear. Here, we sought to study the role of gap junctions in the regulation of endothelial stiffness, an important physical feature that is associated with many vascular pathologies. The endothelial cellular stiffness of living endothelial cells was determined by using atomic force microscopy. We found that tumor necrosis factor-α transiently increased endothelial cellular stiffness, which is regulated by cytoskeletal rearrangement and cell-cell interactions. We explored the role of gap junctions in endothelial cellular stiffening by utilizing gap junction blockers, carbenoxolone, inhibitory anti-connexin 32 antibody or anti-connexin 43 antibody. Blockade of gap junctions induced the cellular stiffening associated with focal adhesion formation and cytoskeletal rearrangement, and prolonged tumor necrosis factor-α-induced endothelial cellular stiffening. These results suggest that gap junction-mediated cell-cell interactions play an important role in the regulation of endothelial cellular stiffness. |
---|