Cargando…

Protecting quantum Fisher information of N-qubit GHZ state by weak measurement with flips against dissipation

In this paper we propose a scheme by using weak-measurement-based pre- and post-flips (WMPPF) to protect the average quantum Fisher information (QFI) in the independent amplitude-damping channel (ADC) for N-qubit GHZ state and generalized N-qubit GHZ states. We also discuss the weak measurement and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yu, Zou, Jian, Long, Zheng-wen, Shao, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522470/
https://www.ncbi.nlm.nih.gov/pubmed/28733578
http://dx.doi.org/10.1038/s41598-017-04726-1
Descripción
Sumario:In this paper we propose a scheme by using weak-measurement-based pre- and post-flips (WMPPF) to protect the average quantum Fisher information (QFI) in the independent amplitude-damping channel (ADC) for N-qubit GHZ state and generalized N-qubit GHZ states. We also discuss the weak measurement and quantum measurement reversal (WMQMR) with the same ADC. Based on the analytical and numerical results we obtain the main result: the WMPPF can reduce the effect of dissipation on the average QFI of the phase or the frequency for GHZ state and some generalized GHZ states, and the WMQMR can reduce the effect of dissipation on the average fidelity for GHZ state and generalized GHZ states in ADC. Comparing QFI with fidelity for WMPPF or for WMQMR, a scheme protecting the average fidelity does not necessarily protect the average QFI, even with the same parameters, and vice versa. We also focus on the average QFI versus N in the phase estimation and the frequency estimation of WMPPF, both of which show the advantages over the do-nothing (DN) case. From the investigation of the QFI of weight factor, we find that increasing qubit number can protect it both for WMPPF and for DN.