Cargando…
The symmetric ADMM with indefinite proximal regularization and its application
Due to updating the Lagrangian multiplier twice at each iteration, the symmetric alternating direction method of multipliers (S-ADMM) often performs better than other ADMM-type methods. In practical applications, some proximal terms with positive definite proximal matrices are often added to its sub...
Autores principales: | Sun, Hongchun, Tian, Maoying, Sun, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522537/ https://www.ncbi.nlm.nih.gov/pubmed/28794608 http://dx.doi.org/10.1186/s13660-017-1447-3 |
Ejemplares similares
-
The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
por: Sun, Min, et al.
Publicado: (2017) -
ADMM-EM Method for L
(1)-Norm Regularized Weighted Least Squares PET Reconstruction
por: Teng, Yueyang, et al.
Publicado: (2016) -
Preconditioning of indefinite problems by regularization
por: Axelsson, O
Publicado: (1979) -
A nonconvex [Formula: see text] regularization model and the ADMM based algorithm
por: Fang, Zhuang, et al.
Publicado: (2022) -
Fixing and extending some recent results on the ADMM algorithm
por: Banert, Sebastian, et al.
Publicado: (2020)