Cargando…
Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review
In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography...
Autores principales: | Hong, Keum-Shik, Khan, Muhammad Jawad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522881/ https://www.ncbi.nlm.nih.gov/pubmed/28790910 http://dx.doi.org/10.3389/fnbot.2017.00035 |
Ejemplares similares
-
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
por: Khan, M. Jawad, et al.
Publicado: (2014) -
Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain–Computer Interface
por: Arif, Saad, et al.
Publicado: (2021) -
fNIRS-based brain-computer interfaces: a review
por: Naseer, Noman, et al.
Publicado: (2015)