Cargando…
Rational enhancement of the energy barrier of bis(tetrapyrrole) dysprosium SMMs via replacing atom of porphyrin core
With the coordination geometry of Dy(III) being relatively fixed, oxygen and sulfur atoms were used to replace one porphyrin pyrrole nitrogen atom of sandwich complex [(Bu)(4)N][Dy(III)(Pc)(TBPP)] [Pc = dianion of phthalocyanine, TBPP = 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin]. The energy...
Autores principales: | Cao, Wei, Gao, Chen, Zhang, Yi-Quan, Qi, Dongdong, Liu, Tao, Wang, Kang, Duan, Chunying, Gao, Song, Jiang, Jianzhuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523118/ https://www.ncbi.nlm.nih.gov/pubmed/28791093 http://dx.doi.org/10.1039/c5sc02314a |
Ejemplares similares
-
Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato) Dysprosium(III) SMMs
por: Shang, Hong, et al.
Publicado: (2015) -
Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta
por: Fölsche, Vincent, et al.
Publicado: (2022) -
Molecular Engineering of Free‐Base Porphyrins as Ligands—The N−H⋅⋅⋅X Binding Motif in Tetrapyrroles
por: Kielmann, Marc, et al.
Publicado: (2018) -
Engineering atomic-scale magnetic fields by dysprosium single atom magnets
por: Singha, A., et al.
Publicado: (2021) -
Multiscale study of mononuclear Co(II) SMMs based on curcuminoid ligands
por: Díaz-Torres, Raúl, et al.
Publicado: (2016)