Cargando…
Efficient decoding algorithms for generalized hidden Markov model gene finders
BACKGROUND: The Generalized Hidden Markov Model (GHMM) has proven a useful framework for the task of computational gene prediction in eukaryotic genomes, due to its flexibility and probabilistic underpinnings. As the focus of the gene finding community shifts toward the use of homology information t...
Autores principales: | Majoros, William H, Pertea, Mihaela, Delcher, Arthur L, Salzberg, Steven L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552317/ https://www.ncbi.nlm.nih.gov/pubmed/15667658 http://dx.doi.org/10.1186/1471-2105-6-16 |
Ejemplares similares
-
An empirical analysis of training protocols for probabilistic gene finders
por: Majoros, William H, et al.
Publicado: (2005) -
An empirical analysis of training protocols for probabilistic gene finders
por: Majoros, William H, et al.
Publicado: (2004) -
Minimus: a fast, lightweight genome assembler
por: Sommer, Daniel D, et al.
Publicado: (2007) -
Sequence motif finder using memetic algorithm
por: Caldonazzo Garbelini, Jader M., et al.
Publicado: (2018) -
Versatile and open software for comparing large genomes
por: Kurtz, Stefan, et al.
Publicado: (2004)