Cargando…
Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project
Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting in...
Autores principales: | Alghamdi, Manal, Al-Mallah, Mouaz, Keteyian, Steven, Brawner, Clinton, Ehrman, Jonathan, Sakr, Sherif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524285/ https://www.ncbi.nlm.nih.gov/pubmed/28738059 http://dx.doi.org/10.1371/journal.pone.0179805 |
Ejemplares similares
-
Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
por: Sakr, Sherif, et al.
Publicado: (2018) -
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project
por: Sakr, Sherif, et al.
Publicado: (2017) -
Systolic Blood Pressure Response During Exercise Stress Testing: The Henry Ford ExercIse Testing (FIT) Project
por: O’Neal, Wesley T, et al.
Publicado: (2015) -
Physical Fitness and Hypertension in a Population at Risk for Cardiovascular Disease: The Henry Ford ExercIse Testing (FIT) Project
por: Juraschek, Stephen P., et al.
Publicado: (2014) -
Higher cardiorespiratory fitness predicts long-term survival in patients with heart failure and preserved ejection fraction: the Henry Ford Exercise Testing (FIT) Project
por: Orimoloye, Olusola A., et al.
Publicado: (2019)