Cargando…

In situ stable crack growth at the micron scale

Grain boundaries typically dominate fracture toughness, strength and slow crack growth in ceramics. To improve these properties through mechanistically informed grain boundary engineering, precise measurement of the mechanical properties of individual boundaries is essential, although it is rarely a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sernicola, Giorgio, Giovannini, Tommaso, Patel, Punit, Kermode, James R., Balint, Daniel S., Britton, T. Ben, Giuliani, Finn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524636/
https://www.ncbi.nlm.nih.gov/pubmed/28740188
http://dx.doi.org/10.1038/s41467-017-00139-w
Descripción
Sumario:Grain boundaries typically dominate fracture toughness, strength and slow crack growth in ceramics. To improve these properties through mechanistically informed grain boundary engineering, precise measurement of the mechanical properties of individual boundaries is essential, although it is rarely achieved due to the complexity of the task. Here we present an approach to characterize fracture energy at the lengthscale of individual grain boundaries and demonstrate this capability with measurement of the surface energy of silicon carbide single crystals. We perform experiments using an in situ scanning electron microscopy-based double cantilever beam test, thus enabling viewing and measurement of stable crack growth directly. These experiments correlate well with our density functional theory calculations of the surface energy of the same silicon carbide plane. Subsequently, we measure the fracture energy for a bi-crystal of silicon carbide, diffusion bonded with a thin glassy layer.